Categories: Thủ Thuật Mới

Mẹo Bài 17 trang 214 sbt đại số 10 2022

Mục lục bài viết

Thủ Thuật về Bài 17 trang 214 sbt đại số 10 Mới Nhất

Cập Nhật: 2022-02-11 16:34:04,Bạn Cần biết về Bài 17 trang 214 sbt đại số 10. Bạn trọn vẹn có thể lại Thảo luận ở cuối bài để Mình được tương hỗ.


( = dfraccos dfracalpha 2 – sin dfracalpha 2cos dfracalpha 2 + sin dfracalpha 2 = dfrac1 – tan dfracalpha 21 + tan dfracalpha 2 ) (= dfractan dfracpi 4 – tan dfracalpha 21 + tan dfracpi 4.tan dfracalpha 2) (= tan (dfracpi 4 – dfracalpha 2)) (= tan left[ dfracpi 2 – left( dfracpi 4 + dfracalpha 2 right) right])
Lựa chọn câu để xem lời giải nhanh hơn

  • LG a
  • LG b
  • LG c
  • LG d

Chứng minh rằng

LG a

(dfracsqrt 1 + cos alpha + sqrt 1 – cos alpha sqrt 1 + cos alpha – sqrt 1 – cos alpha ) (= cot (dfracalpha 2 + dfracpi 4)) ((pi < alpha < 2pi ));

Lời giải rõ ràng:

(sqrt 1 + cos alpha ) (= sqrt 1 + 2cos ^2dfracalpha 2 – 1 = sqrt 2cos ^2dfracalpha 2 ) (= – sqrt 2 cos dfracalpha 2(dodfracpi 2 < dfracalpha 2 < pi ))

(sqrt 1 – cos alpha ) (= sqrt 1 – left( 1 – 2sin ^2dfracalpha 2 right) = sqrt 2sin ^2dfracalpha 2 ) (= sqrt 2 sin dfracalpha 2)

Suy ra

(dfracsqrt 1 + cos alpha + sqrt 1 – cos alpha sqrt 1 + cos alpha – sqrt 1 – cos alpha ) (= dfrac – sqrt 2 cos dfracalpha 2 + sqrt 2 sin dfracalpha 2 – sqrt 2 cos dfracalpha 2 – sqrt 2 sin dfracalpha 2)

( = dfraccos dfracalpha 2 – sin dfracalpha 2cos dfracalpha 2 + sin dfracalpha 2 = dfrac1 – tan dfracalpha 21 + tan dfracalpha 2 ) (= dfractan dfracpi 4 – tan dfracalpha 21 + tan dfracpi 4.tan dfracalpha 2) (= tan (dfracpi 4 – dfracalpha 2)) (= tan left[ dfracpi 2 – left( dfracpi 4 + dfracalpha 2 right) right])

( = cot (dfracalpha 2 + dfracpi 4))

LG b

(dfraccos 4atan 2a – sin 4acos 4acot 2a + sin 4a = – tan ^22a);

Lời giải rõ ràng:

( = dfraccos 4atan 2a – sin 4acos 4acot 2a + sin 4a )

(beginarrayl = dfraccos 4a.dfracsin 2acos 2a – sin 4acos 4a.dfraccos 2asin 2a + sin 4a\ = dfraccos 4asin 2a – sin 4acos 2acos 2a:dfraccos 4acos 2a + sin 4asin 2asin 2a\ = dfraccos 4asin 2a – sin 4acos 2acos 2a.dfracsin 2acos 4acos 2a + sin 4asin 2aendarray)

(= dfraccos 4asin 2a – sin 4acos 2acos 4acos 2a + sin 4asin 2a.tan 2a)

=(dfrac – sin 2acos 2atan 2a = – tan ^22a).

LG c

(1 + 2cos 7a = dfracsin 10,5asin 3,5a);

Lời giải rõ ràng:

(dfracsin 10,5asin 3,5a = dfracsin (7 + 3,5a)sin 3,5a ) (= dfracsin 7acos 3,5a + cos 7asin 3,5asin 3,5a)

=(dfracsin 3,5a(2cos ^23,5a + cos 7a)sin 3,5a)

=((2cos ^23,5a – 1) + 1 + cos7a)

=(2cos7a + 1.)

LG d

(dfractan 3atan a = dfrac3 – tan ^2a1 – 3tan ^2a).

Lời giải rõ ràng:

(dfractan (a + 2a)tan a = dfractan a + tan 2atan a(1 – mathoprm tanatannolimits 2a ) (= dfractan a + dfrac2tan a1 – tan ^2atan a(1 – dfrac2tan ^2a1 – tan ^2a))

=(dfrac3 – tan ^2a1 – 3tan ^2a)

Reply
9
0
Chia sẻ

Video full hướng dẫn Chia Sẻ Link Cập nhật Bài 17 trang 214 sbt đại số 10 ?

– Một số Keyword tìm kiếm nhiều : ” Video full hướng dẫn Bài 17 trang 214 sbt đại số 10 tiên tiến và phát triển nhất , Chia Sẻ Link Tải Bài 17 trang 214 sbt đại số 10 “.

Giải đáp vướng mắc về Bài 17 trang 214 sbt đại số 10

Bạn trọn vẹn có thể để lại phản hồi nếu gặp yếu tố chưa hiểu nhé.
#Bài #trang #sbt #đại #số Bài 17 trang 214 sbt đại số 10

Phương Bách

Published by
Phương Bách