Mục lục bài viết
Cập Nhật: 2022-03-01 15:12:13,Quý khách Cần kiến thức và kỹ năng về Giải đề thi Toán tuyển sinh lớp 10 năm 2022. You trọn vẹn có thể lại phản hồi ở cuối bài để Mình đc lý giải rõ ràng hơn.
Nhằm giúp những bạn ôn luyện và giành được kết quả cao trong kì thi tuyển sinh vào lớp 10, Tôi biên soạn tuyển tập Đề thi vào lớp 10 môn Toán (có đáp án) theo cấu trúc ra đề Trắc nghiệm – Tự luận mới. Cùng với đó là những dạng bài tập hay có trong đề thi vào lớp 10 môn Toán với phương pháp giải rõ ràng. Hi vọng tài liệu này sẽ tương hỗ học viên ôn luyện, củng cố kiến thức và kỹ năng và sẵn sàng tốt cho kì thi tuyển sinh vào lớp 10 môn Toán năm 2021.
Tóm lược đại ý quan trọng trong bài
I/ Đề thi môn Toán vào lớp 10 (không chuyên)
III/ Các dạng bài tập ôn thi vào lớp 10 môn Toán
Sở Giáo dục đào tạo và Đào tạo …..
Kỳ thi tuyển sinh vào lớp 10
Đề thi môn: Toán
Năm học 2021 – 2022
Thời gian: 120 phút
Câu 1: Điều kiện xác lập của biểu thức là:
A.x 0 B.x 1 C.x 1 hoặc x < 0 D.0 < x 1
Câu 2: Đường thẳng 2x + 3y = 5 trải qua điểm nào trong những điểm tại đây
A. ( 1; -1) B. ( 2; -3) C. ( -1; 1) D. (- 2; 3)
Câu 3: Cho phương trình x 2y = 2 (1). Phương trình nào trong những phương trình tại đây kết thích phù hợp với (1) để được phương trình vô số nghiệm
A.x + y = -1 B. x – y = -1
C.2x – 3y = 3D.2x – 4y = -4
Câu 4: Tọa độ giao điểm của (P) y = x2 và đường thẳng (d) y = + 3
A. (2; 2)B. ( 2; 2) và (0; 0)
C.(-3; ) D.(2; 2) và (-3; )
Câu 5: Giá trị của k để phương trình x2 + 3x + 2k = 0 có 2 nghiệm trái dấu là:
A. k > 0B. k 2 D. k < 2
Câu 6: Cho tam giác ABC vuông tại A có AB : AC = 3 : 4 và đường cao AH bằng 9 cm. Khi đó độ dài đoạn thẳng HC bằng:
A. 12 cm B. 9 cm C. 6 cm D. 15 cm
Câu 7: Cho hai tuyến phố tròn (O; 3cm) và (O; 4cm) có OO’ = 5 cm. Vị trí tương đối của 2 đường tròn là:
A. Hai đường tròn tiếp xúc ngoài với nhau
B. Hai đường tròn tiếp xúc trong với nhau
C. Hai đường tròn không giao nhau
D. Hai đường tròn cắt nhau
Câu 8: Thể tích hình cầu thay đổi ra làm thế nào nếu nửa đường kính hình cầu tăng gấp gấp đôi
A. Tăng gấp 16 lần B. Tăng gấp 8 lần
C. Tăng gấp 4 lần D. Tăng gấp 2 lần
Bài 1: (2 điểm)
1) Thu gọn biểu thức
2) giải phương trình và hệ phương trình sau:
a) 3×2 + 5x – 8 = 0
b) (x2 + 5)2 = 3(x2 + 5) + 4
Bài 2: (1,5 điểm) Trong mặt phẳng tọa độ Oxy cho Parabol (P) : y = x2 và đường thẳng (d) :
y = 2mx 2m + 1
a) Với m = -1 , hãy vẽ 2 đồ thị hàm số trên cùng một hệ trục tọa độ
b) Tìm m để (d) và (P) cắt nhau tại 2 điểm phân biệt : A (x1; y1 );B(x2; y2) sao cho tổng những tung độ của hai giao điểm bằng 2 .
Bài 3: (1 điểm) Rút gọn biểu thức sau:
Tìm x để A < 0
Bài 4: (3,5 điểm) Cho đường tròn (O) có dây cung CD cố định và thắt chặt. Gọi M là yếu tố nằm ở vị trí chính giữa cung nhỏ CD. Đường kính MN của đường tròn (O) cắt dây CD tại I. Lấy điểm E bất kỳ trên cung lớn CD, (E khác C,D,N); ME cắt CD tại K. Các đường thẳng NE và CD cắt nhau tại P.
a) Chứng minh rằng :Tứ giác IKEN nội tiếp
b) Chứng minh: EI.MN = NK.ME
c) NK cắt MP tại Q.. Chứng minh: IK là phân giác của góc EIQ
d) Từ C vẽ đường thẳng vuông góc với EN cắt đường thẳng DE tại H. Chứng minh khi E di động trên cung lớn CD (E khác C, D, N) thì H luôn chạy trên một đường cố định và thắt chặt.
1.C2.D3.A4.D
5.B6.A7.D8.B
Bài 1:
2) a) 3×2 + 5x – 8 = 0
Δ = 52 – 4.3.(-8) = 121 => Δ = 11
Vậy phương trình đã cho có tập nghiệm là S =
b) (x2 + 3)2 = 3(x2 + 3) + 4
Đặt x2 + 3 = t (t 3), phương trình đã cho trở thành
t2 – 3t – 4 = 0
Δ = 32 – 4.(-4) = 25> 0
Phương trình có 2 nghiệm phân biệt :
Do t 3 nên t = 4
Với t = 4, ta có: x2 + 3 = 4 x2 = 1 x = ±1
Vậy phương trình đã cho có 2 nghiệm x = ± 1
Bài 2:
Trong mặt phẳng tọa độ Oxy cho Parabol (P) : y = x2 và đường thẳng (d) :
y = 2mx 2m + 1
a) Với m = 1; (d): y = 2x 1
Bảng giá trị
x01
y = 2x 1-11
(P) : y = x2
Bảng giá trị
x -2 -1 0 1 2
y = x2 4 1 0 1 4
Đồ thị hàm số y = x2 là đường parabol nằm phía trên trục hoành, nhận Oy làm trục đối xứng và nhận điểm O(0; 0) là đỉnh và điểm thấp nhất
b) cho Parabol (P) : y = x2 và đường thẳng (d) :
y = 2mx 2m + 1
Phương trình hoành độ giao điểm của (P) và (d) là:
x2 = 2mx – 2m + 1
x2 – 2mx + 2m – 1 = 0
Δ’ = mét vuông – (2m – 1)=(m – 1)2
(d) và (P) cắt nhau tại 2 điểm phân biệt khi và chỉ khi phương trình hoành độ giao điểm có 2 nghiệm phân biệt
Δ’ > 0 (m – 1)2 > 0 m 1
Khi đó (d) cắt (P) tại 2 điểm A(x1, 2mx1 2m + 1) ; B ( x2, 2mx2 2m + 1)
Theo định lí Vi-et ta có: x1 + x2 = 2m
Từ giả thiết đề bài, tổng những tung độ giao điểm bằng 2 nên ta có:
2mx1 2m + 1 + 2mx2 2m + 1 = 2
2m (x1 + x2) 4m + 2 = 2
4m2 – 4m = 0 4m(m – 1) = 0
Đối chiếu với Đk m 1, thì m = 0 thỏa mãn thị hiếu.
Bài 3:
A > 0 > 0 5 – 5x > 0 x < 1 x < 1
Vậy A > 0 khi 0 < x < 1
Bài 4:
a) Do M là yếu tố ở chính giữa cung CD nên OM CD
=> KIN = 90o
Xét tứ giác IKEN có:
KIN = 90o
KEN = 90o (góc nội tiếp chắn nửa đường tròn)
=> KIN + KEN = 180o
=> Tứ giác IKEN là tứ giác nội tiếp
b) Xét ΔMEI và ΔMNK có:
NME là góc chung
IEM = MNK ( 2 góc nội tiếp cùng chắn cung IK)
=> ΔMEI ΔMNK (g.g)
=>EI.MN = NK.ME
c) Xét tam giác MNP có:
ME NP; PI MN
ME giao PI tại K
=> K là trực tâm của tam giác MNP
=> NQP = 90o
Xét tứ giác NIQP có:
NQP = 90o
NIP = 90o
=> 2 đỉnh Q., I cùng nhìn cạnh NP dưới 1 góc bằng nhau
=> tứ giác NIQP là tứ giác nội tiếp
=> QIP = QNP (2 góc nội tiếp cùng chắn cung PQ)(1)
Mặt khác IKEN là tứ giác nội tiếp
=> KIE = KNE (2 góc nội tiếp cùng chắn cung KE)(2)
Từ (1) và (2)
=> QIP = KIE
=> IE là tia phân giác của QIE
d) Ta có:
Mà DEM = MEC (2 góc nội tiếp chắn 2 cung bằng nhau)
=> EHC = ECH => ΔEHC cân tại E
=> EN là đường trung trực của CH
Xét đường tròn (O) có: Đường kính OM vuông góc với dây CD tại I
=> NI là đường trung trực của CD => NC = ND
EN là đường trung trực của CH => NC = NH
=> N là tâm đường tròn ngoại tiếp tam giác DCH
=> H (N, NC)
Mà N, C cố định và thắt chặt => H thuộc đường tròn cố định và thắt chặt
Sở Giáo dục đào tạo và Đào tạo …..
Kỳ thi tuyển sinh vào lớp 10
Đề thi môn: Toán
Năm học 2021 – 2022
Thời gian: 120 phút
Bài 1 : ( 1,5 điểm)
1) Rút gọn biểu thức sau:
2) Cho biểu thức
a) Rút gọn biểu thức M.
b) Tìm những giá trị nguyên của x để giá trị tương ứng của M nguyên.
Bài 2 : ( 1,5 điểm)
1) Tìm m để hai phương trình sau có tối thiểu một nghiệm chung:
2×2 (3m + 2)x + 12 = 0
4×2 (9m 2)x + 36 = 0
2) Tìm thông số a, b của đường thẳng y = ax + b biết đường thẳng trên trải qua hai điểm là
(1; -1) và (3; 5)
Bài 3 : ( 2,5 điểm)
1) Cho Phương trình :x2 + (m – 1) x + 5m – 6 = 0
a) giải phương trình khi m = – 1
b) Tìm m để 2 nghiệm x1 và x2 thỏa mãn thị hiếu hệ thức: 4×1 + 3×2 = 1
2) Giải bài toán sau bằng phương pháp lập phương trình hoặc hệ phương trình
Một công ty vận tải lối đi bộ điều một số trong những xe tải để chở 90 tấn hàng. Khi đến kho hàng thì có 2 xe bị hỏng nên để chở hết số hàng thì mỗi xe còn sót lại phải chở thêm 0,5 tấn so với dự tính ban sơ. Hỏi số xe được điều đến chở hàng là bao nhiêu xe? Biết rằng khối lượng hàng chở ở mỗi xe là như nhau.
Bài 4 : ( 3,5 điểm)
1) Cho (O; R), dây BC cố định và thắt chặt không trải qua tâm O, A là yếu tố bất kì trên cung lớn BC. Ba đường cao AD, BE, CF của tam giác ABC cắt nhau tại H.
a) Chứng minh tứ giác HDBF, BCEF nội tiếp
b) K là yếu tố đối xứng của A qua O. Chứng minh HK trải qua trung điểm của BC
c) Gỉa sử BAC = 60o. Chứng minh Δ AHO cân
2) Một hình chữ nhật có chiều dài 3 cm, chiều rộng bằng 2 cm, quay hình chữ nhật này một vòng quanh chiều dài của nó được một hình trụ. Tính diện tích quy hoạnh s toàn phần của hình trụ.
Bài 5 : ( 1 điểm)
1) Cho a, b là 2 số thực sao cho a3 + b3 = 2. Chứng minh:
0 < a + b 2
2) Cho x, y, z là những số thực thỏa mãn thị hiếu x + y + z = 1
Tìm giá trị nhỏ nhất của biểu thức
Đáp án và Hướng dẫn giải
Bài 1 :
2)
Để M nguyên thì nguyên
x – 1 Ư (2)
x – 1 ±1; ±2
Ta có bảng sau:
x-1
– 2
-1
1
2
x
-1
0
2
3
x
Không tồn tại x
0
4
9
Vậy với x = 0; 4; 9 thì M nhận giá trị nguyên.
Bài 2 :
1)
2×2 (3m + 2)x + 12 = 0
4×2 (9m 2)x + 36 = 0
Đặt y = x2,khi đó ta có:
Giải (*):
(6 – 3m)x = -12
Phương trình (*) có nghiệm 6 – 3m 0 m 2
Khi đó, phương trình có nghiệm:
Theo cách đặt, ta có: y = x2
=>16(m-2) = 16
m = 3
Thay m= 3 vào 2 phương trình ban sơ,ta có:
Vậy khi m =3 thì hai phương trình trên có nghiệm chung và nghiệm chung là 4
2) Tìm thông số a, b của đường thẳng y = ax + b biết đường thẳng trên trải qua hai điểm là
(1; -1) và (3; 5)
Đường thẳng y = ax + b trải qua hai điểm (1; -1) và (3; 5) nên ta có:
Vậy đường thẳng cần tìm là y = 2x 3
Bài 3 :
1) Cho Phương trình : x2 + (m – 1)x + 5m – 6 = 0
a) Khi m = -1, phương trình trở thành:
x2 – 2x – 11 = 0
Δ’ = 1 + 11=12 => (Δ’) = 23
Phương trình có nghiệm:
x1 = 1 + 23
x2 = 1 – 23
Vậy hệ phương trình có tập nghiệm là:
S =1 + 23; 1 – 23
b)
x2 + (m – 1)x + 5m – 6 = 0
Ta có:
Δ = (m – 1)2 – 4(5m – 6)
Δ = mét vuông – 2m + 1 – 20m + 24 = mét vuông – 22m + 25
Phương trình có hai nghiệm Δ 0 mét vuông – 22m + 25 0,(*)
Theo hệ thức Vi-ét ta có:
Theo đề bài ta có:
4×1 + 3×2 =1 x1 + 3(x1 + x2 ) = 1
x1 + 3(1 – m) = 1
x1= 3m – 2
=> x2 = 1 – m – x1 = 1 – m – (3m – 2) = 3 – 4m
Do đó ta có:
(3m – 2)(3 – 4m) = 5m – 6
9m – 12m2 – 6 + 8m = 5m – 6
– 12m2 + 12m = 0
-12m(m – 1) = 0
Thay m = 0 vào (*) thấy thảo mãn
Thay m = 1 vào (*) thấy thảo mãn
Vậy có hai giá trị của m thỏa mãn thị hiếu bài toán là m = 0 và m = 1.
2)
Gọi số lượng xe được điều đến là x (xe) (x > 0; x N)
=>Khối lượng hàng mỗi xe chở là: (tấn)
Do có 2 xe nghỉ nên mỗi xe còn sót lại phải chở thêm 0,5 tấn so với dự tính nên mỗi xe phải chở:
Khi đó ta có phương trình:
.(x-2)=90
=>(180 + x)(x – 2) = 180x
x2 – 2x – 360 = 0
Vậy số xe được điều đến là 20 xe
Bài 4 :
a) Xét tứ giác BDHF có:
BDH = 90o (AD là đường cao)
BFH = 90o (CF là đường cao)
=>BDH + BFH = 180o
=> Tứ giác BDHF là tứ giác nội tiếp
Xét tứ giác BCEF có:
BFC = 90o (CF là đường cao)
BEC = 90o (BE là đường cao)
=> 2 đỉnh E và F cùng nhìn cạnh BC dưới 1 góc vuông
=> Tứ giác BCEF là tứ giác nội tiếp
b) Ta có:
KBA) = 90o (góc nội tiếp chắn nửa đường tròn)
=>KBAB
Mà CHAB (CH là đường cao)
=> KB // CH
Tương tự:
KCA) = 90o (góc nội tiếp chắn nửa đường tròn)
=>KCAC
BHAC (BH là đường cao)
=> HB // CK
Xét tứ giác BKCF có:
KB // CH
HB // CK
=> Tứ giác BKCH là hình bình hành
=> Hai đường chéo BC và KH cắt nhau tại trung điểm mỗi đường
=> HK trải qua trung điểm của BC
c) Gọi M là trung điểm của BC
Xét tam giác AHK có:
O là trung điểm của AK
M là trung điểm của BC
=> OM là đường trung bình của tam giác AHK
=> OM = AH (1)
ΔBOC cân tại O có OM là trung tuyến
=> OM là tia phân giác của BOC
=> MOC = BAC = 60o (= BOC )
Xét tam giác MOC vuông tại M có:
OM = OC.cos(MOC) = OC.cos60o= OC = OA (2)
Từ (1) và (2) => OA = AH => ΔOAH cân tại A
2)
Quay hình chữ nhật vòng quanh chiều dài được một hình trụ có nửa đường kính đáy là R= 2 cm, độ cao là h = 3 cm
Khi đó diện tích quy hoạnh s toàn phần của hình trụ là
Stp = 2πR2 + 2πRh = 2π22 + 2π.2.3 = 20π (cm2 )
Bài 5:
a) Theo đề bài
Ta có: a3 + b3 = 2 > 0 a3 > – b3 a > – b a + b > 0 (1)
Nhân cả hai vế của (1) với (a – b)2 0 a,b ta được:
(a + b)(a – b)2 0
(a2 – b2)(a – b) 0
a3 – a2b – ab2 + b3 0
a3 + b3 ab(a + b)
3(a3 + b3 ) 3ab(a + b)
4(a3 + b3 ) a3 + b3 + 3ab(a + b)
4(a3 + b3 ) (a + b)3
(a + b)3 8
a + b 2 (2)
Từ (1) và (2) ta có điều phải chứng tỏ
b)
Ta có:
Ta lại sở hữu:
,dấu bằng xẩy ra khi y=2x
,dấu bằng xẩy ra khi z=4x
,dấu bằng xẩy ra khi z=2y
Vậy giá trị nhỏ nhất của P là
Giới thiệu kênh Youtube Tôi
Reply
1
0
Chia sẻ
– Một số Keyword tìm kiếm nhiều : ” Review Giải đề thi Toán tuyển sinh lớp 10 năm 2022 tiên tiến và phát triển nhất , Share Link Download Giải đề thi Toán tuyển sinh lớp 10 năm 2022 “.
Quý khách trọn vẹn có thể để lại Comments nếu gặp yếu tố chưa hiểu nha.
#Giải #đề #thi #Toán #tuyển #sinh #lớp #năm Giải đề thi Toán tuyển sinh lớp 10 năm 2022