Mục lục bài viết
Kinh Nghiệm về Tìm số tự nhiên nhỏ nhất có 10 chữ số biết rằng số đó chia cho 17 dư 2 chia cho 29 dư 5 Chi Tiết
Cập Nhật: 2022-03-28 04:51:15,You Cần kiến thức và kỹ năng về Tìm số tự nhiên nhỏ nhất có 10 chữ số biết rằng số đó chia cho 17 dư 2 chia cho 29 dư 5. You trọn vẹn có thể lại Comments ở phía dưới để Admin đc tương hỗ.
Đã gửi 20-10-năm ngoái – 22:41
Tóm lược đại ý quan trọng trong bài
- Tính chia hết cho 3 hoặc 9
- Tính chia hết cho 4
- Tính chia hết cho 5
- Tính chia hết cho 6
- Tính chia hết cho 7
- Tính chia hết cho 13
- Ước số hợp
- Ước số nguyên tố
- Các ví dụ đáng để ý
- Chứng minh sử dụng số học mô đun
1.Tìm số tự nhiên nhỏ nhất có 10 chữ số biết x chia cho 19 dư 1, chia cho 23 dư 21 và chia cho 41 dư 34
2.Tìm x,y t/m:
$3x^2+xy+2y^5=35362$
3. Cho đa thức P(x) có toàn bộ thông số đều là STN và nhỏ hơn 5 thỏa mãn thị hiếu đk P(5)=259. Tính P(năm ngoái)
4. Biết $x_1,x_2,x_3,x_4$ là 4 nghiệm của PT:
$3x^4-10x^3-x^2+4x+1=0$ Tính
$S=x_1^7+x_2^7+x_3^7+x_4^7$
5. Cho tam giác ABC có AB=3.5; BC=4.9; CA=5.7 và đường cao BH. Trên cạnh BC lấy M sao choMC=2BM. Gọi I là giai điểm của AM và BH. TÍnh gần đúng IA,IB,nửa đường kính đường tròn ngoại tiếp. nội tiếp tam giác IBM
6.Tìm số dư $A=(2+sqrt3)^37+(2-sqrt3)^37$ cho năm ngoái
Bài viết đã được sửa đổi nội dung bởi Coppy dera: 20-10-năm ngoái – 22:45
- I Love MC, nhatcasio và lelehieu2002 thích
Like đi
Kết bạn qua facebook facebook/tqt2001
Đã gửi 31-10-năm ngoái – 19:19
6)
Đặt $a=2+sqrt3,b=-sqrt3+2$
$a^37+b^37=(a^18+b^18)(a^19+b^19)-a^18.b18(a+b)$
Thế vào $a^18+b^18)$ và mũ $19$ đều là số 10 chữ số nên dễ tính
4) Bấm nghiệm shilf solve khá nhanh
1) $19x+1=23y+21=41z+34$
$41z=19x-33$ đồng dư $-33$ mod (19)
Tìm ra dạng z trong dạng này mình không tồn tại máy tính nên gọi tạm là $z=19k+j$
Tiếp tục
$41z=23y-13$ đồng dư $10$ (mod 23) => $z=23m+n$
tiếp tục xét $23m+n=19k+j$ tương tự cái trên từ đó tìm ra $n$
Câu 5 : Sử dụng đơn thuần và giản dị định lí cosin,sin và công thức
$S_delta=fracabc4R=pr$
Trong số đó $p.$ là nửa đường kính đường tròn nội tiếp tam giác $R$ ngược lại
- Liquid và lelehieu2002 thích
youtube….h?v=r-fyXPvHJjA
Đã gửi 01-11-năm ngoái – 12:57
bài 1:
chia cho 23 dư 21 và chia cho 41 dư 34 => x = 23b + 21; x = 41c + 34
=> 9.41x = 9.41.23b + 7749; 16.23x = 16.23.41c + 12512
=> x = 943q – 48 hay x = 943q + 895
mà x = 19a + 1 do đó a = (943q + 894):19
ta lại sở hữu: x = 943q + 895 $geqslant$ 109 => q $geqslant$ 1060444,438
nhập quy trình trên máy tính: X = X+1 : (943X + 894):19 bấm Calc nhập X=1060444, tiếp tục bấm = đến khi giá trị nguyên ta được X=1060458
do đó q=1060458. thay vào 943q + 895 ta được số cần tìm là 1000012789
Đã gửi 01-11-năm ngoái – 13:08
Bài 2:
$sqrtDelta =sqrt424344-24y^5+y^2$
Nhập quy trình Y= Y+1 : $sqrt424344-24y^5+y^2$
=> y =7
vậy (23;7)
Đã gửi 01-11-năm ngoái – 13:16
bài 3:
nhận xét: 53 < P(x) < 54
do đó: P(x) = ax3 + bx2 + cx + d
ta sẽ nhẫm những giá trị a, b, c, d
nhẫm a: ta có 2.53 = 250 => a = 2
nhẫm b: ta có một.52 = 50 => ax3 + bx2 > 259 loại = > b=0
nhẫm c: ta có một.5 = 5 => c = 1
nhẫm d: => d = 4
do đó: P(x) = ax3 + x + 4
Vậy: P(năm ngoái) = 16362708769
Đã gửi 01-11-năm ngoái – 13:26
Bài 4:
nhập vào máy: 3X4 – 10X3 – X2 + 4X + 1 = 0 bấm shift -> solve nhập X = 10 tiếp sau đó lưu vào biến A
tiếp tục: 3X4 – 10X3 – X2 + 4X + 1 = 0 bấm shift -> solve nhập X = -10 tiếp sau đó lưu vào biến B
tiếp tục: 3X4 – 10X3 – X2 + 4X + 1 = 0 bấm shift -> solve nhập X = 0 tiếp sau đó lưu vào biến C
tiếp tục lần cuối nhập vào máy phân số: (3X4 – 10X3 – X2 + 4X + 1)/ (X-A)(X-B)(X-C) = 0 bấm shift -> solve nhập X = 0 tiếp sau đó lưu vào biến D
Kết quả :A7 + B7 + C7 + D7 bấm = ta được 4287,1541
Đã gửi 01-11-năm ngoái – 13:36
bài 1, 2, 3, 4 nếu thấy đúng thì thak nha.
bài 5: kẻ MK vuông góc với AC, suy ra kq ( giờ chưa rãnh giải rõ ràng)
bài 6: có 3 cách giải (cách 3 dài nhất dùng khai triển nhị thức nếu làm cũng phải 30 phút), cách 1 tìm hiểu thêm tại đây: diendantoanho…-số-a-cho-2026/
còn cách 2 dùng số hạng tổng quát
Bài viết đã được sửa đổi nội dung bởi huypropj: 01-11-năm ngoái – 13:37
Đã gửi 01-11-năm ngoái – 16:25
bài 1, 2, 3, 4 nếu thấy đúng thì thak nha.
bài 5: kẻ MK vuông góc với AC, suy ra kq ( giờ chưa rãnh giải rõ ràng)
bài 6: có 3 cách giải (cách 3 dài nhất dùng khai triển nhị thức nếu làm cũng phải 30 phút), cách 1 tìm hiểu thêm tại đây: diendantoanho…-số-a-cho-2026/
còn cách 2 dùng số hạng tổng quát
Bài : Phang Cosin với Sin luôn anh ko nên phải nghĩ tỉnh em cho dùng hết ,nếu như kẻ thì hơi mệt
youtube….h?v=r-fyXPvHJjA
Quy tắc chia hết hay tín hiệu chia hết là những cách nhanh để xác lập xem một số trong những nguyên đã cho có chia hết cho một số trong những chia (ước) rõ ràng hay là không mà không cần tiến hành phép chia, thường bằng phương pháp kiểm tra những chữ số của nó. Mặc dù có những phép kiểm tra tính chia hết cho những số trong bất kỳ hệ cơ số nào và chúng đều rất khác nhau, nội dung bài viết này chỉ trình diễn những quy tắc và ví dụ cho những số thuộc hệ thập phân, hay số trong hệ cơ số 10. Martin Gardner đã lý giải và phổ cập những quy tắc này trong phân mục “Trò chơi Toán học” vào tháng 9 năm 1962 trên tạp chí Scientific American.[1]
Các quy tắc được tổng hợp trong bảng tại đây biến hóa một số trong những nguyên nhất định thành một số trong những thường nhỏ hơn, trong lúc vẫn bảo toàn tính chất chia hết cho số chia cần kiểm tra. Do đó, trừ khi có ghi chú khác, số thu được sau khoản thời hạn biến hóa phải được định hình và nhận định là chia hết cho cùng một ước số. Trong một số trong những trường hợp, quy trình biến hóa trọn vẹn có thể được tái diễn cho tới khi rõ ràng tính chất chia hết; so với những trường hợp khác (ví như kiểm tra n chữ số ở đầu cuối) kết quả phải được kiểm tra bằng những phương pháp khác.
Đối với những ước số có nhiều quy tắc để xét tính chia hết thì những quy tắc trong bảng sắp xếp ưu tiên thích hợp cho kiểm tra những số cần kiểm tra nguyên có nhiều chữ số, tiếp sau đó là những quy tắc hữu ích cho những số có ít chữ số hơn.
Lưu ý: Để kiểm tra tính chia hết cho bất kỳ ước số nào trọn vẹn có thể màn biểu diễn dưới dạng 2n hoặc 5n, trong số đó n là số nguyên dương, chỉ việc kiểm tra n chữ số ở đầu cuối.
Lưu ý: Để kiểm tra tính chia hết cho bất kỳ số nào biểu thị được dưới dạng tích của những thừa số nguyên tố
p.
1
n
p.
2
m
p.
3
q
displaystyle p_1^np_2^mp_3^q
, toàn bộ chúng ta trọn vẹn có thể kiểm tra riêng kĩ năng chia hết cho từng số nguyên tố với lũy thừa thích hợp của nó. Ví dụ: kiểm tra tính chia hết cho 24 (24 = 8*3 = 23*3) tương tự với kiểm tra tính chất chia hết cho 8 (23) và 3 đồng thời, do đó toàn bộ chúng ta chỉ việc xét tính chia hết cho 8 và 3 để chứng tỏ tính chia hết cho 24, 48.
Lưu ý: dấu hai chấm (:) trong bảng là dấu để chỉ ví dụ, không phải là dấu chia.
Ước số
Điều kiện chia hết
Ví dụ
1
Không cần Đk đặc biệt quan trọng nào. Mọi số nguyên bất kì đều chia hết cho một.
2: chia hết cho một.
2
Chữ số tận cùng (hàng cty chức năng) là chẵn (0, 2, 4, 6, hay 8).[2][3]
Số 1294: chữ số 4 chẵn nên chia hết cho 2.
3
Cộng những chữ số của số cần kiểm tra. Tổng phải chia hết cho 3.[2][4][5]
405 → 4 + 0 + 5 = 9 và 636 → 6 + 3 + 6 = 15, cả hai số đều chia hết cho 3.
16,499,205,854,376 → 1+6+4+9+9+2+0+5+8+5+4+3+7+6 tổng là 69 → 6 + 9 = 15 → 1 + 5 = 6, 6 rõ ràng chia hết cho 3.
Lấy số lượng những chữ số 2, 5, và 8 có trong số cần kiểm tra trừ đi số những chữ số 1, 4, và 7 trong số lượng đó. Kết quả phải chia hết cho 3.
Sử dụng ví dụ trên: 16,499,205,854,376 có bốn chữ số nhóm 1, 4 và 7 và có bốn chữ số nhóm 2, 5 và 8; ∴ Bởi vì 4 − 4 = 0 là một bội của 3, số 16,499,205,854,376 chia hết cho 3.
4
Hai chữ số ở đầu cuối tạo thành một số trong những chia hết cho 4.[2][3]
40,832: có 32 chia hết cho 4.
Nếu chữ số hàng trăm là chẵn, thì chữ số hàng cty chức năng phải là 0, 4, hoặc 8.
Nếu chữ số hàng trăm là lẻ, chữ số hàng cty chức năng phải là 2 hoặc 6.
40,832: chữ số 3 lẻ, còn chữ số hàng cty chức năng là 2.
Nhân đôi chữ số hàng trăm, rồi cộng với chữ số hàng cty chức năng được số chia hết cho 4.
40832: 2 × 3 + 2 = 8, chia hết cho 4.
5
Chữ số tận cùng là 0 hoặc 5.[2][3]
495: chữ số tận cùng là 5.
6
Số chia hết cho toàn bộ 2 và 3 thì chia hết cho 6
1458: có một + 4 + 5 + 8 = 18, nên nó chia hết cho 3 và chữ số tận cùng là chẵn, vì thế nó chia hết cho 6.
7
Lập một tổng xen kẽ đan dấu (tức tổng đại số có dấu cộng trừ xen kẽ nhau giữa những số hạng) của từng nhóm ba chữ số từ phải qua trái được kết quả là một bội số của 7.[5][6]
1,369,851: 851 − 369 + 1 = 483 = 7 × 69
Lấy 5 nhân với chữ số tận cùng rồi cộng vào phần còn sót lại của số thu được một số trong những chia hết cho 7. (Có hiệu lực hiện hành bởi 49 chia hết cho 7, xem chứng tỏ ở dưới.)
483: có 48 + (3 × 5) = 63 = 7 × 9.
Lấy 2 nhân với chữ số tận cùng rồi trừ vào lấy phần còn sót lại được một bội của 7. (Cách làm này còn có hiệu lực hiện hành vì 21 chia hết 7.)
483: có 48 − (3 × 2) = 42 = 7 × 6.
Lấy 9 nhân với chữ số tận cùng rồi trừ vào phần còn sót lại được kết quả chia hết cho 7.
483: có 48 − (3 × 9) = 21 = 7 × 3.
Cộng 3 lần chữ số nguồn vào chữ số tiếp theo của số đó rồi viết thêm vào kết quả chữ số còn sót lại thì phải được một bội số của 7. (Cách làm này còn có hiệu lực hiện hành vì 10a + b − 7a = 3a + b; số thu được đồng dư modulo 7 với 10a + b.)
483: có 4×3 + 8 = 20,
203: có 2×3 + 0 = 6,
63: có 6×3 + 3 = 21.
Cộng hai chữ số sau cùng vào hai lần phần còn sót lại thì được bội của 7. (Có hiệu lực hiện hành vì 98 chia hết cho 7)
483,595: có 95 + (2 × 4835) = 9765: 65 + (2 × 97) = 259: 59 + (2 × 2) = 63.
Nhân từng chữ số (từ phải qua trái) với từng số tương ứng (từ trái qua phải) trong dãy sau: 1, 3, 2, −1, −3, −2 (tiến hành tái diễn với những chữ số ở vị trí vượt quá hàng trăm nghìn). Tổng những tích trên là bội của 7.
483,595: có (4 × (−2)) + (8 × (−3)) + (3 × (−1)) + (5 × 2) + (9 × 3) + (5 × 1) = 7.
Cộng chữ số tận cùng với 3 lần phần còn sót lại của số được một bội của 7.[7]
224: có 4 + (3 x 22) = 70
Cộng thêm 3 lần chữ số tận cùng vào gấp đôi phần còn sót lại được một bội của 7.[7]
245: có (3 x 5) + (2 x 24) = 7 x 9 = 63
8
Nếu chữ số hàng trăm là chẵn, thì số tạo thành bởi hai chữ số sau cùng phải chia hết cho 8.
624: 24 chia hết cho 8.
Nếu chữ số hàng trăm là lẻ, thì số tạo thành bởi hai chữ số sau cùng thêm vào đó 4 phải được số chia hết cho 8.
352: 52 + 4 = 56 chia hết cho 8.
Cộng chữ số sau cùng vào hai lần phần còn sót lại. Giá trị thu được phải là bội của 8.
56: có (5 × 2) + 6 = 16.
Ba chữ số sau cùng tạo thành số chia hết cho 8.[2][3]
34,152: chỉ việc xét tính chia hết cho 152: =19 × 8
Cộng 4 lần chữ số hàng trăm vào gấp đôi chữ số hàng trăm và 1 lần chữ số hàng cty chức năng
được kết quả phải là bội của 8.
34,152: 4 × 1 + 5 × 2 + 2 = 16
9
Tính tổng những chữ số, được kết quả chia hết cho 9.[2][4][5]
2880: có 2 + 8 + 8 + 0 = 18: có một + 8 = 9.
10
Chữ số hàng cty chức năng là 0.[3]
130: chữ số hàng cty chức năng là 0.
11
Lập tổng xen kẽ đan dấu giữa những chữ số, được kết quả phải chia hết cho 11.[2][5]
918,082: có 9 − 1 + 8 − 0 + 8 − 2 = 22 = 2 × 11.
Cộng những nhóm gồm hai chữ số từ phải qua trái, kết quả phải chia hết cho 11.[2]
627: có 06 + 27 = 33 = 3 × 11.
Trừ đi chữ số tận cùng vào phần còn sót lại của số, kết quả phải chia hết cho 11.
627: có 62 − 7 = 55 = 5 × 11.
Cộng thêm chữ số tận cùng tới hàng trăm (hay thêm 10 lần chữ số hàng cty chức năng vào phần còn sót lại). Kết quả phải chia hết cho 11.
627: có 62 + 70 = 132: có 13 + 20 = 33 = 3 × 11.
Nếu số lượng những chữ số là chẵn thì cộng chữ số đầu và trừ chữ số cuối vào phần còn sót lại. Kết quả phải chia hết cho 11.
918,082: số chữ số là chẵn (6) → 1808 + 9 − 2 = 1815: có 81 + 1 − 5 = 77 = 7 × 11
Nếu số lượng chữ số là lẻ thì trừ cả chữ số đầu và chữ số cuối vào phần còn sót lại. Kết quả phải chia hết cho 11.
14,179: số chữ số là lẻ (5) → 417 − 1 − 9 = 407 = 37 × 11
12
Số đó chia hết cho toàn bộ 3 và 4.
324: chia hết cho toàn bộ 3 và 4
Trừ chữ số sau cùng vào hai lần phần còn sót lại. Kết quả phải chia hết cho 12.
324: 32 × 2 − 4 = 60 = 5 × 12.
13
Lập tổng xen kẽ từng nhóm ba chữ số từ phải qua trái. Kết quả phải chia hết cho 13.[6]
2,911,272: 272 − 911 + 2 = −637
Cộng thêm 4 lần chữ số hàng cty chức năng vào phần còn sót lại, kết quả phải chia hết cho 13.
637: 63 + 7 × 4 = 91, 9 + 1 × 4 = 13.
Trừ đi số gồm hai chữ số cuối vào bốn lần phần còn sót lại, được kết quả chia hết cho 13.
923: 9 × 4 − 23 = 13.
Trừ đi 9 lần chữ số tận cùng vào phần còn sót lại, được kết quả chia hết cho 13.
637: 63 − 7 × 9 = 0.
14
Số đó chia hết cho toàn bộ 2 và 7.
224: sử dụng tính chất chia hết cho 2 và 7 ta thấy nó đều chia hết.
Cộng hai chữ số cuối vào hai lần phần còn sót lại, được kết quả chia hết cho 14.
364: 3 × 2 + 64 = 70.
1764: 17 × 2 + 64 = 98.
15
Số đó chia hết cho toàn bộ ba và 5.[8]
390: nó chia hết cho toàn bộ ba và 5.
16
Nếu chữ số hàng nghìn là chẵn thì số tạo thành bởi ba chữ số cuối phải chia hết cho 16.
254,176: 176 = 16 × 11.
Nếu chữ số hàng nghìn là lẻ, thì số tạo thành bởi ba chữ số cuối phải chia hết cho 16.
3408: 408 + 8 = 416 = 26 × 16.
Cộng hai chữ số cuối vào 4 lần phần còn sót lại, kết quả phải chia hết cho 16.
176: 1 × 4 + 76 = 80.
1168: 11 × 4 + 68 = 112.
Bốn chữ số tận cùng phải chia hết cho 16.[2][3]
157,648: 7,648 = 478 × 16.
17
Trừ 5 lần chữ số tận cùng vào phần còn sót lại, được số chia hết cho 17.
221: 22 − 1 × 5 = 17.
Trừ hai chữ số tận cùng vào hai lần phần còn sót lại.
4,675: 46 × 2 − 75 = 17.
Cộng 9 lần chữ số tận cùng vào 5 lần phần còn sót lại, bỏ đi chữ số 0 tận cùng của kết quả nếu có rồi tái diễn.
4,675: 467 × 5 + 5 × 9 = 2380; 238: 23 × 5 + 8 × 9 = 187.
18
Số đó chia hết cho toàn bộ 2 và 9.
342: chia hết cho toàn bộ hai và 9.
19
Cộng thêm hai lần chữ số tận cùng vào phần còn sót lại.
437: 43 + 7 × 2 = 57.
Cộng 4 lần hai chữ số tận cùng vào phần còn sót lại.
6935: 69 + 35 × 4 = 209.
20
Số đó chia hết cho 10, và chữ số hàng trăm là chẵn.
360: chia hết cho 10, và 6 là chẵn.
Số tạo bởi hai chữ số tận cùng phải chia hết cho 20.[3]
480: 80 chia hết cho 20.
21
Trừ hai lần chữ số tận cùng vào phần còn sót lại của số được một bội của 21.
168: 16 − 8 × 2 = 0.
Số đó chia hết cho toàn bộ 3 và 7.[8]
231: chia hết cho toàn bộ ba và 7.
22
Số đó chia hết cho toàn bộ 2 và 11.[8]
352: chia hết cho toàn bộ hai và 11.
23
Cộng 7 lần chữ số cuối vào phần còn sót lại.
3128: 312 + 8 × 7 = 368: 36 + 8 × 7 = 92.
Cộng 3 lần hai chữ số cuối vào phần còn sót lại.
1725: 17 + 25 × 3 = 92.
24
Số đó chia hết cho toàn bộ ba và 8.[8]
552: chia hết cho toàn bộ ba và 8.
25
Xét số tạo bởi hai chữ số cuối.[3]
134,250: 50 chia hết cho 25.
26
Số đó chia hết cho toàn bộ hai cho 13.[8]
156: chia hết cho toàn bộ hai và 13.
Trừ 5 lần chữ số cuối vào gấp đôi phần còn sót lại được một bội của 26.
1248: (124 ×2) − (8×5) =208=26×8
27
Tính tổng từng nhóm ba chữ số từ phải qua trái.
2,644,272: 2 + 644 + 272 = 918 = 34 × 27.
Phần còn sót lại trừ đi 8 lần chữ số cuối.
621: 62 − 1 × 8 = 54.
Trừ hai chữ số cuối vào 8 lần phần còn sót lại.
6507: 65 × 8 − 7 = 520 − 7 = 513 = 27 × 19.
28
Số đó chia hết cho toàn bộ bốn và 7.[8]
140: chia hết cho toàn bộ bốn và 7.
29
Cộng thêm ba lần chữ số ở đầu cuối vào phần còn sót lại.
348: 34 + 8 × 3 = 58.
Cộng 9 lần hai chữ số cuối với phần còn sót lại.
5510: 55 + 10 × 9 = 145 = 5 × 29.
30
Số đó chia hết cho toàn bộ 3 và 10.[8]
270: chia hết cho toàn bộ 3 và 10.
Trước hết, lấy số ta muốn kiểm tra (ví dụ số 376) và ghi lại chữ số tận cùng trong số, vô hiệu những chữ số khác. Sau đó lấy chữ số đó (6) bỏ qua những chữ số còn sót lại và xác lập xem nó có chia hết cho 2. Nếu nó chia hết cho 2 thì số ban sơ chia hết cho 2.
Thí dụ
Tính chia hết cho 3 hoặc 9
Đầu tiên, lấy một số trong những bất kỳ (ví dụ số 492) và cộng từng chữ số trong số đó với nhau (4 + 9 + 2 = 15). Sau đó lấy tổng đó (15) và xác lập xem liệu nó có chia hết cho 3 hoặc 9. Số ban sơ chia hết cho 3 (hoặc 9) khi và chỉ khi tổng những chữ số của nó chia hết cho 3 (hoặc 9).
Thí dụ 1
Nếu một số trong những là tích của 3 số liên tục thì số đó luôn chia hết cho 3. Điều này rất hữu ích khi số có dạng (n × (n − 1) × (n + 1))
Thí dụ 2
Tính chia hết cho 4
Quy tắc cơ bản để xét chia hết cho 4 là nếu số tạo thành bởi hai chữ số tận cùng của một số trong những chia hết cho 4 thì số ban sơ chia hết cho 4;[2][3] điều này là vì 100 chia hết cho 4 và do đó việc thêm vào hàng trăm, hàng nghìn, v.v. chỉ đơn thuần và giản dị là thêm một số trong những khác chia hết cho 4. Nếu bất kỳ số nào kết thúc bằng một số trong những có hai chữ số mà ta biết là chia hết cho 4 (ví dụ: 24, 04, 08, v.v.), thì số nguyên sẽ chia hết cho 4 bất kể số nào đứng trước hai chữ số ở đầu cuối.
Ngoài ra, người ta trọn vẹn có thể chỉ việc chia đôi số đã cho, tiếp sau đó kiểm tra kết quả để tìm xem nó có chia hết cho 2. Nếu đúng, số ban sơ chia hết cho 4. Ngoài ra, kết quả của phép chia này cũng như lấy số ban sơ chia cho 4.
Thí dụ.
Quy tắc chung
Cách khác
Tính chia hết cho 5
Phép chia hết cho 5 trọn vẹn có thể thuận tiện và đơn thuần và giản dị xác lập bằng phương pháp kiểm tra chữ số ở đầu cuối trong số (ví dụ nổi bật nổi bật số 475) và xem nó liệu có phải là 0 hoặc 5. Nếu chữ số ở đầu cuối là 0 hoặc 5, thì toàn bộ số đó chia hết cho 5.[2][3]
Ngoài ra, nếu chữ số ở đầu cuối của số là 0, thì thương của phép chia cho 5 sẽ là những chữ số còn sót lại nhân với 2. Ví dụ, số 40 kết thúc bằng số 0 (0), vì vậy hãy lấy những chữ số còn sót lại (4) và nhân nó với hai (4 × 2 = 8), thì sẽ tiến hành kết quả tương tự như kết quả của 40 chia cho 5 (40/5 = 8).
Nếu chữ số ở đầu cuối của số là 5, thì thương sẽ là những chữ số còn sót lại nhân với hai (2), cộng với một (1). Ví dụ, số 125 kết thúc bằng chữ số 5, vì vậy lấy những chữ số còn sót lại (12), nhân chúng với hai (12 × 2 = 24), tiếp sau đó cộng một (24 + 1 = 25). Kết quả đúng bằng kết quả của 125 chia cho 5 (125/5 = 25).
Thí dụ.
Nếu chữ số ở đầu cuối là 0
Nếu chữ số ở đầu cuối là 5
Tính chia hết cho 6
Tính chia hết cho 6 được xét bằng phương pháp xét xem số đó có chia hết cho toàn bộ 2 và 3 hay là không.[8] Nói cách khác, số đó là một số trong những chẵn và chia hết cho 3.[8] Đây là cách tốt nhất. Nếu số đó chia hết cho sáu thì lấy số ban sơ (246) chia cho hai (246 ÷ 2 = 123). Sau đó, lấy kết quả đó chia cho ba (123 ÷ 3 = 41). Kết quả này đúng bằng số ban sơ chia cho sáu (246 ÷ 6 = 41).
Thí dụ.
Tìm số dư của một số trong những khi chia cho 6
Nhân chữ số ở tận cùng bên phải với chữ số thứ nhất bên trái trong dãy sau rồi lấy chữ số thứ hai tính từ bên phải của số đó nhân với chữ số thứ hai từ bên trái của dãy, rồi cứ như vậy tiếp tục cho tới hết. Sau đó tính tổng toàn bộ những giá trị phép nhân ở trên, lấy số dư của tổng khi chia cho 6, cũng đó là số dư của số ban sơ.
dãy: (1, −2, −2, −2, −2, những chữ số tiếp theo đều là −2 đến hết)
hoặc: (1, 4, 4, 4, 4, những chữ số tiếp theo đều là 4)
Thí dụ: Số dư khi 1036125837 chia cho 6 là bao nhiêu?
Phép nhân chữ số tận cùng bên phải với chữ số thứ nhất trong dãy = 1 × 7 = 7
Phép nhân với chữ số thứ hai tính từ phải với chữ số thứ hai trong dãy = 3 × −2 = −6
Chữ số thứ ba tính tính từ bên phải = −16
Chữ số thứ tư tính tính từ bên phải = −10
Chữ số thứ năm tính từ bên phải = −4
Chữ số thứ sáu tính từ bên phải = −2
Chữ số thứ bảy tính từ bên phải = −12
Chữ số thứ tám tính từ bên phải = −6
Chữ số thứ chín tính từ bên phải = 0
Chữ số thứ mười tính từ bên phải = −2
Tổng = −51
−51 ≡ 3 (mod 6)
Vậy số dư = 3
Tính chia hết cho 7
Phép chia hết cho 7 trọn vẹn có thể được kiểm tra bằng những phương pháp đệ quy. Một số có dạng 10x + y chia hết cho 7 khi và chỉ khi x − 2y chia hết cho 7. Nói cách khác, trừ đi hai lần chữ số tận cùng của số vào số được tạo thành bởi những chữ số còn sót lại. Tiếp tục làm điều này cho tới khi thu được một số trong những ta biết là chia hết cho 7. Số ban sơ chia hết cho 7 khi và chỉ khi số thu được sau khoản thời hạn sử dụng quy trình kiểm tra này chia hết cho 7. Ví dụ, số 371: 37 − (2 × 1) = 37 − 2 = 35; 3 − (2 × 5) = 3 − 10 = −7; vậy, vì −7 chia hết cho 7 nên 371 chia hết cho 7.
Tương tự, một số trong những có dạng 10x + y chia hết cho 7 khi và chỉ khi x + 5y chia hết cho 7. Vì vậy, cộng năm lần chữ số ở đầu cuối với số được tạo bởi những chữ số còn sót lại, và tiếp tục làm như vậy cho tới khi ta thu được số ta đã biết là chia hết cho 7.[9]
Một phương pháp khác sử dụng phép nhân với 3. Một số dạng 10x + y có cùng số dư khi chia cho 7 như số 3x + y. Ta nhân chữ số tận cùng bên trái của số ban sơ với 3, thêm vào đó chữ số tiếp theo, lấy phần dư khi chia cho 7, và tiếp tục lặp từ trên đầu: nhân với 3, cộng với chữ số tiếp theo, v.v. Ví dụ, số 371: 3 × 3 + 7 = 16 chia 7 dư 2 và 2 × 3 + 1 = 7. Phương pháp này còn trọn vẹn có thể được sử dụng để tìm phần dư của phép chia cho 7.
Một thuật toán phức tạp hơn để kiểm tra tính chia hết cho 7 sử dụng những tính chất đồng dư: 100 ≡ 1, 101 ≡ 3, 102 ≡ 2, 103 ≡ 6, 104 ≡ 4, 105 ≡ 5, 106 ≡ 1,… (mod 7). Viết từng chữ số của số cần kiểm tra (371) theo thứ tự hòn đảo ngược (173), nhân chúng liên tục với những chữ số trong dãy 1, 3, 2, 6, 4, 5, (tái diễn dãy nhân này nếu chưa hết) và cộng những tích với nhau (1×1 + 7×3 + 3×2 = 1 + 21 + 6 = 28). Số ban sơ chia hết cho 7 khi và chỉ khi số thu được bằng phương pháp sử dụng thuật toán này chia hết cho 7 (vì vậy 371 chia hết cho 7 vì 28 cũng chia hết cho 7).[10]
Phương pháp này trọn vẹn có thể được đơn thuần và giản dị hóa mà không cần phép tính nhân. Tất cả những gì cần làm với việc đơn thuần và giản dị hóa này là ghi nhớ dãy số ở trên (132645…), chỉ việc cộng và trừ, nhưng luôn thao tác với những số có một chữ số.
Thuật toán đơn thuần và giản dị hóa trình làng như sau:
- Lấy ví dụ số 371
- Đổi toàn bộ những chữ số 7, 8 hoặc 9 thành 0, 1 hoặc 2, tương ứng. Trong ví dụ này, toàn bộ chúng ta nhận được số: 301. Bước thứ hai này trọn vẹn có thể bỏ qua, nhưng ngoại trừ chữ số tận cùng bên trái nhất thiết phải đổi, nhưng nếu tuân theo bước này trọn vẹn có thể hỗ trợ cho những phép tính sau này thuận tiện và đơn thuần và giản dị hơn.
- Bây giờ chuyển chữ số thứ nhất (3) thành chữ số tiếp theo nó trong dãy 13264513… Trong ví dụ của toàn bộ chúng ta, 3 trở thành 2.
- Cộng kết quả đã có được ở bước trước (2) với chữ số thứ hai của số (301), và thay kết quả đó cho toàn bộ hai chữ số, để toàn bộ những chữ số còn sót lại không thay đổi: 2 + 0 = 2. Vậy 301 trở thành 21.
- Lặp lại quy trình này cho tới khi toàn bộ chúng ta được bội số trọn vẹn có thể nhận ra của 7 hoặc đến khi được một số trong những từ 0 đến 6. Vì vậy, khởi đầu từ 21 (đã là một bội số trọn vẹn có thể nhận ra của 7), nếu ta lại làm tiếp thì lấy chữ số thứ nhất (2) và chuyển nó thành số tiếp theo tương ứng trong dãy số trên: 2 trở thành 6. Sau đó cộng nó với chữ số thứ hai: 6 + 1 = 7. Vậy ta trọn vẹn có thể kết luận 371 là bội của 7.
- Nếu ở bước nào đó ta gặp chữ số thứ nhất là 8 hoặc 9 thì chúng sẽ đổi thành tương ứng 1 hoặc 2, nhưng nếu chữ số đầu là 7 thì trở thành số 0 nên trọn vẹn có thể bỏ đi. Ở bước trên ta còn sót lại một số lượng 7, ở đầu cuối thành số 0.
Nếu như kết quả thu được sau khoản thời hạn tiến hành quy trình trên là 0 hoặc một bội của 7 thì số ban sơ cũng là một bội của 7. Còn nếu toàn bộ chúng ta nhận được một số lượng nào khác từ là một trong những đến 6, nó tức là phải trừ thêm bao nhiêu cty chức năng vào số ban sơ để được một bội của 7 (hay số dư khi chia số đó cho 7). Ví dụ, xét số 186.
- Đầu tiên, đổi 8 thành 1: 116.
- Bây giờ, đổi 1 thành chữ số sau trong dãy số (chữ số 3), cộng nó vào chữ số thứ hai và viết kết quả thay cho toàn bộ hai: 3 + 1 = 4. Vì vậy, 116 hiện giờ trở thành 46.
- Lặp lại quy trình, vì số lượng này to nhiều hơn 7. Bây giờ, nhờ vào dãy số 4 trở thành 5, rồi thêm vào đó vào chữ số 6 tận cùng. Tức là 11.
- Lặp lại quy trình một lần nữa: 1 trở thành 3, được cộng vào chữ số thứ hai (1): 3 + 1 = 4.
Bây giờ toàn bộ chúng ta đã có được một số trong những nhỏ hơn 7, và số này (4) là số dư của phép chia 186/7. Vì vậy, 186 trừ 4, hay là 182, phải là một bội số của 7.
Lưu ý: Lý do tại sao điều này còn có hiệu lực hiện hành là vì nếu toàn bộ chúng ta có: a+b=c và b là một bội của một số trong những n bất kỳ, thì a và c nhất thiết sẽ đã có được cùng một số trong những dư khi chia cho n. Ví dụ, trong 2 + 7 = 9 thì 7 chia hết cho 7. Vì vậy 2 và 9 phải có cùng một số trong những dư khi chia cho 7. Số dư đó là 2.
Do đó, nếu một số trong những n là một bội của 7 (nghĩa là: số dư của phép chia n/7 là 0) thì khi cộng (hoặc trừ) thêm vào n một bội khác của 7 ta vẫn được một bội của 7.
Điều mà thuật toán này tiến hành, như đã lý giải ở trên so với hầu hết những quy tắc chia hết, chỉ đơn thuần và giản dị là trừ từng bội số nhỏ của 7 từ số ban sơ cho tới khi đạt được một số trong những đủ nhỏ để toàn bộ chúng ta nhớ liệu nó liệu có phải là bội số của 7. Nếu chữ số 1 trở thành 3 ở vị trí thập phân tiếp theo nó, điều này tương tự như chuyển 10×10n thành 3×10n. Và điều này thực sự cũng như việc trừ 7×10n (rõ ràng là bội số của 7) vào 10×10n.
Tương tự, khi ta biến chữ số 3 thành chữ số 2 ở vị trí thập phân sau, thực ra ta đang biến 30×10n thành 2×10n, điều này cũng như phép trừ 30×10n − 28×10n, và đây lại là một phép trừ bội số của 7. Lý do tương tự cũng vận dụng cho toàn bộ những biến hóa còn sót lại:
- 20×10n − 6×10n = 14×10n
- 60×10n − 4×10n = 56×10n
- 40×10n − 5×10n = 35×10n
- 50×10n − 1×10n = 49×10n
Ví dụ phương pháp thứ nhất
1050 → 105 − 2×0 = 105 − 0 = 105 → 10 − 2×5 = 10 − 10 = 0.
ĐÁP ÁN: 1050 chia hết cho 7.
Ví dụ phương pháp thứ hai
1050 → 0501 (hòn đảo ngược) → 0×1 + 5×3 + 0×2 + 1×6 = 0 + 15 + 0 + 6 = 21 (nhân và cộng với những chữ số trong dãy).
ĐÁP ÁN: 1050 chia hết cho 7.
Phương pháp Vệ-đà (Vedic) xét tính chia hết cho 7
Có thể xét tính chia hết cho 7 nhờ phương pháp số mật tiếp trong Toán học Vệ-đà: bằng một phép nhân ước số với một số trong những (nhân tử) gọi là số mật tiếp hay Ekhādika. Cách làm này còn trọn vẹn có thể vận dụng cho xét tính chia hết cho ước số bất kỳ. Đầu tiên đổi ước số cần kiểm tra (tức số 7) sang “họ số 9” bằng phương pháp lấy 7 nhân với 7 để sở hữu số 49: 7×7 = 49. Cộng 1 được 50, bỏ đi chữ số cty chức năng ta được 5, rồi lấy 5 làm Ekhādika hay nhân tử. Bắt đầu xét tính chia hết từ phía bên phải của số cần xét. Nhân chữ số tận cùng bên phải với 5 rồi cộng tích này với chữ số bên trái ngay tiếp sau đó. Viết kết quả vào một trong những dòng ở ngay dưới chữ số đó. Lặp lại phương pháp đó, nhân chữ số tận cùng của số kết quả ở dòng dưới với 5 rồi cộng với chữ số hàng trăm. Sau đó thêm vào đó chữ số tiếp theo bên trái của số ban sơ. Viết kết quả đó ngay dưới chữ số đó, cứ tiếp tục lặp thuật toán cho tới hết bên trái. Nếu kết quả ở đầu cuối được là 0 hoặc là một bội số của 7 thì đúng là số ban sơ cũng chia hết cho 7. Nếu không thì không chia hết. Điều này tuân Theo phong cách ghi một dòng lý tưởng trong kinh Vệ-đà.[11][nguồn không đáng tin?]
Ví dụ phương pháp Vệ-đà:
Xét xem số 438,722,025 có chia hết cho 7 hay là không? Nhân tử = 5.
4 3 8 7 2 2 0 2 5
| | | | | | | | |
42 37 46 37 6 40 37 27 05
ĐÚNG
Phương pháp Pohlman–Mass
Phương pháp Pohlman-Mass phục vụ nhu yếu một lời giải nhanh gọn trọn vẹn có thể xác lập xem hầu hết những số nguyên có chia hết cho 7 hay là không trong ba bước hoặc thấp hơn. Phương pháp này trọn vẹn có thể hữu ích trong một cuộc thi toán học như MATHCOUNTS, trong số đó thời hạn là một yếu tố quyết định hành động trong định hình và nhận định kỹ năng giải không cần máy tính và tính điểm trong Vòng Nước rút.
Bước A: Nếu số nguyên nhỏ hơn hoặc bằng 1.000, trừ hai lần chữ số tận cùng của số vào số được tạo thành bởi những chữ số còn sót lại. Nếu kết quả là bội số của bảy, thì số ban sơ cũng vậy (và ngược lại). Ví dụ:
112 -> 11 − (2×2) = 11 − 4 = 7 CÓ
98 -> 9 − (8×2) = 9 − 16 = −7 CÓ
634 -> 63 − (4×2) = 63 − 8 = 55 KHÔNG
Vì 1,001 chia hết cho 7, ta trọn vẹn có thể tìm thấy một phát hiện thú vị: cho những bộ số gồm 1, 2 hoặc 3 chữ số tái diễn và những chữ số 0 xen giữa tạo thành những số có 6 chữ số (được cho phép những số 0 ở đầu) thì trong số đó toàn bộ những số như vậy đều chia hết cho 7. Ví dụ:
001 001 = 1,001 / 7 = 143
010 010 = 10,010 / 7 = 1,430
011 011 = 11,011 / 7 = 1,573
100 100 = 100,100 / 7 = 14,300
101 101 = 101,101 / 7 = 14,443
110 110 = 110,110 / 7 = 15,730
01 01 01 = 10,101 / 7 = 1,443
10 10 10 = 101,010 / 7 = 14,430
111,111 / 7 = 15,873
222,222 / 7 = 31,746
999,999 / 7 = 142,857
576,576 / 7 = 82,368
Đối với toàn bộ những ví dụ trên, trừ ba chữ số thứ nhất cho ba chữ số ở đầu cuối sẽ cho kết quả là bội số của bảy. Lưu ý rằng những số 0 được phép ở đầu để tạo thành xâu gồm 6 chữ số. Phát hiện này là cơ sở cho tiến trình tiếp theo, B và C.
Bước B: Nếu số nguyên nằm trong tầm từ là một trong những,001 đến một triệu, hãy tìm xâu gồm những 1, 2 hoặc 3 chữ số tái diễn tạo thành một số trong những có 6 chữ số gần với số nguyên cần xét (được cho phép đặt những số 0 ở đầu và điều này trọn vẹn có thể hỗ trợ cho bạn tưởng tượng ra số xâu). Nếu hiệu dương giữa xâu đó và số cần xét nhỏ hơn 1.000, hãy vận dụng Bước A. Điều này trọn vẹn có thể được tiến hành bằng phương pháp trừ ba chữ số thứ nhất cho ba chữ số ở đầu cuối. Ví dụ:
341,355 − 341,341 = 14 -> 1 − (4×2) = 1 − 8 = −7 CÓ
67,326 − 067,067 = 259 -> 25 − (9×2) = 25 − 18 = 7 CÓ
Thực tế rằng 999,999 là một bội số của 7 trọn vẹn có thể được sử dụng để xác lập tính chia hết cho 7 của những số nguyên to nhiều hơn một triệu bằng phương pháp giảm số nguyên ấy thành số có 6 chữ số trọn vẹn có thể được xác lập bằng bước B. Có thể được tiến hành thuận tiện và đơn thuần và giản dị điều này bằng phương pháp thêm vào đó những chữ số bên trái sáu chữ số thứ nhất đến với số tạo bởi sáu chữ số và tiếp tục với Bước A.
Bước C: Nếu số nguyên cần xét to nhiều hơn một triệu, trừ nó cho bội số sớm nhất của 999.999 và tiếp sau đó vận dụng Bước B. Đối với những số to nhiều hơn, sử dụng những bộ to nhiều hơn như số gồm 12 chữ số (999.999.999.999), v.v. Sau đó, biến hóa số nguyên thành một số trong những nhỏ hơn trọn vẹn có thể giải được bằng Bước B. Ví dụ:
22,862,420 − (999,999 × 22) = 22,862,420 − 21,999,978 -> 862,420 + 22 = 862,442
862,442 -> 862 − 442 (Step B) = 420 -> 42 − (0×2) (Bước A) = 42 CÓ
Điều này được cho phép ta cộng và trừ những bộ ba chữ số xen kẽ nhau để xác lập kĩ năng chia hết cho 7. Hiểu được bộ sưu tập này được cho phép bạn nhanh gọn tính toán xét chia hết cho 7 như được thấy trong những ví dụ mẫu sau:
Ví dụ phương pháp Pohlman−Mass xét tính chia hết cho 7:
Xét xem 98 liệu có chia hết cho 7?
98 -> 9 − (8×2) = 9 − 16 = −7 CÓ (Bước A)
Xét xem 634 có chia hết cho 7 hay là không?
634 -> 63 − (4×2) = 63 − 8 = 55 KHÔNG (Bước A)
Xét xem 355,341 có chia hết cho 7 hay là không?
355,341 − 341,341 = 14,000 (Bước B) -> 014 − 000 (Bước B) -> 14 = 1 − (4×2) (Bước A) = 1 − 8 = −7 CÓ
Xét xem 42,341,530 có chia hết cho 7 hay là không?
42,341,530 -> 341,530 + 42 = 341,572 (Bước C)
341,572 − 341,341 = 231 (Bước B)
231 -> 23 − (1×2) = 23 − 2 = 21 CÓ (Bước A)
Sử dụng một chuỗi cộng trừ đại số xen kẽ:
42,341,530 -> 530 − 341 + 42 = 189 + 42 = 231 -> 23 − (1×2) = 21 CÓ
Phương pháp nhân với 3 để xét tính chia hết cho 7, ví dụ:
Xét xem 98 liệu có chia hết cho 7?
98 -> lấy 9 chia 7 dư 2 -> 2×3 + 8 = 14 CÓ
Xét xem 634 liệu có chia hết cho 7?
634 -> 6×3 + 3 = 21 -> dư 0 -> 0×3 + 4 = 4 KHÔNG
Xét xem 355,341 liệu có chia hết cho 7?
3 * 3 + 5 = 14 -> dư 0 -> 0×3 + 5 = 5 -> 5×3 + 3 = 18 -> dư 4 -> 4×3 + 4 = 16 -> dư 2 -> 2×3 + 1 = 7 CÓ
Tìm số dư của 1036125837 chia cho 7
1×3 + 0 = 3
3×3 + 3 = 12 dư 5
5×3 + 6 = 21 dư 0
0×3 + 1 = 1
1×3 + 2 = 5
5×3 + 5 = 20 dư 6
6×3 + 8 = 26 dư 5
5×3 + 3 = 18 dư 4
4×3 + 7 = 19 dư 5
Đáp số là 5
Tìm số dư của một số trong những khi chia cho 7 (một cách khác)
Sử dụng những dãy số sau:
Bắt đầu từ 7 — (1, 3, 2, —1, —3, —2, chu kỳ luân hồi 6 của dãy được tái diễn cho sáu chữ số tiếp theo, quay trở lại từ là một trong những, 3,…) Chu kỳ: 6 chữ số. Các số tái diễn: 1, 3, 2, −1, −3, −2. Đây là dãy số độ lớn cực tiểu
hoặc dãy số dương:
(1, 3, 2, 6, 4, 5, chu kỳ luân hồi tái diễn cho sáu chữ số tiếp theo) Chu kỳ: 6 chữ số. Số tái diễn: 1, 3, 2, 6, 4, 5
Nhân chữ số tận cùng bên phải (hàng cty chức năng) của số cần xét với chữ số bên trái thứ nhất của một trong hai dãy trên, sau nó lại nhân chữ số thứ hai tính từ bên phải tiếp đó của số cần xét với số thứ hai bên trái của dãy, cứ như vậy làm phép nhân cho tới hết. Sau đó, tính tổng toàn bộ những giá trị và lấy môđun của 7.
Ví dụ: Số dư khi 1036125837 chia cho 7 là bao nhiêu?
Phép nhân chữ số tận cùng bên phải = 1×7 = 7
Phép nhân chữ số thứ hai tính từ bên phải = 3 × 3 = 9
Chữ số thứ ba tính từ bên phải = 8 × 2 = 16
Chữ số thứ tư tính từ bên phải = 5 × −1 = −5
Chữ số thứ năm tính từ bên phải = 2 × −3 = −6
Chữ số thứ sáu tính từ bên phải = 1 × −2 = −2
Chữ số thứ bảy tính từ bên phải = 6 × 1 = 6
Chữ số thứ tám tính từ bên phải = 3 × 3 = 9
Chữ số thứ chín tính từ bên phải = 0
Chữ số thứ mười tính từ bên phải = 1 × −1 = −1
Tổng = 33
33 mod 7 = 5
Phần dư = 5
Phương pháp cặp chữ số chia hết cho 7
Phương pháp này sử dụng dãy mẫu 1, −3, 2 trên những cặp chữ số. Nghĩa là, trọn vẹn có thể kiểm tra kĩ năng chia hết của bất kỳ số nào cho 7 bằng phương pháp thứ nhất tách số đó thành những cặp chữ số, tiếp sau đó nhân từng cặp chữ số đó với từng số của dãy, làm vậy tới ba cặp chữ số (tức là tới sáu chữ số). Nếu số cần xét nhỏ hơn sáu chữ số, thì điền thêm những chữ số 0 vào bên phải cho tới khi có sáu chữ số. Nếu số cần xét to nhiều hơn sáu chữ số, thì tái diễn chu kỳ luân hồi trên cho nhóm sáu chữ số tiếp theo và tiếp sau đó cộng những kết quả với nhau. Lặp lại thuật toán này cho tới khi kết quả được một số trong những đủ nhỏ. Số ban sơ chia hết cho 7 khi và chỉ khi số thu được bằng phương pháp sử dụng thuật toán này chia hết cho 7. Phương pháp này đặc biệt quan trọng phù thích phù hợp với những số nguyên lớn.
Ví dụ 1:
Số cần kiểm tra là 157514. Đầu tiên ta tách số đó thành những cặp chữ số: 15, 75 và 14.
Sau đó ta vận dụng thuật toán: 1 × 15 − 3 × 75 + 2 × 14 = 182
Vì kết quả là 182 nhỏ hơn sáu chữ số, ta thêm số 0 vào bên phải cho tới khi nó có sáu chữ số.
Sau đó, toàn bộ chúng ta lại vận dụng thuật toán: 1 × 18 − 3 × 20 + 2 × 0 = −42
Kết quả −42 ta đã biết chia hết cho 7, do đó số ban sơ 157514 cũng chia hết cho 7.
Ví dụ 2:
Số cần kiểm tra là 15751537186.
(1 × 15 − 3 × 75 + 2 × 15) + (1 × 37 − 3 × 18 + 2 × 60) = −180 + 103 = −77
Kết quả −77 chia hết cho 7, do đó số ban sơ 15751537186 chia hết cho 7.
Tính chia hết cho 13
Kiểm tra số dư khi chia cho 13: sử dụng dãy mẫu (1, −3, −4, −1, 3, 4, chu kỳ luân hồi tiếp tục.) Nếu bạn lạ lẫm tính toán những số âm, thì sử dụng dãy số: (1, 10, 9, 12, 3, 4)
Nhân chữ số tận cùng bên phải của số nguyên cần xét với chữ số bên trái thứ nhất của dãy số ở trên (1), tiếp sau đó nhân chữ số thứ hai tính từ phải của số cần xét với chữ số thứ hai trong dãy số. Cứ như vậy, chu kỳ luân hồi tiếp tục.
Ví dụ: Số dư khi 321 chia cho 13 là bao nhiêu?
Sử dụng dãy số thứ nhất,
Trả lời: 1 × 1 + 2 × −3 + 3 × −4 = −17
Số dư = −17 mod 13 = 9
Ví dụ: Số dư khi 1234567 chia cho 13 là bao nhiêu?
Sử dụng dãy số thứ hai,
Trả lời: 7 × 1 + 6 × 10 + 5 × 9 + 4 × 12 + 3 × 3 + 2 × 4 + 1 × 1 = 178 mod 13 = 9
Số dư = 9.
Tính chia hết trọn vẹn có thể được xác lập bằng hai cách, tùy thuộc vào loại ước số.
Ước số hợp
Một số cần xét chia hết cho một ước số hợp nếu nó chia hết cho bậc lũy thừa tốt nhất của từng thừa số nguyên tố của ước số. Ví dụ, để xác lập tính chia hết của một số trong những cho 36, ta xét tính chia hết của nó cho 4 và 9.[8] Lưu ý rằng, nên phải xét tới bậc lũy thừa tốt nhất, vì thế nếu xét cho 3 và 12, hay 2 và 18, sẽ là không đủ. Một bảng những thừa số nguyên tố trọn vẹn có thể hữu ích cho việc này.
Một ước số hợp cũng trọn vẹn có thể có quy tắc riêng được xây dựng bằng phương pháp sử dụng quy trình tương tự như so với một ước số nguyên tố, như được đưa ra tại đây nhất là so với những ước hợp số đúng bằng lũy thừa của một số trong những nguyên tố, lưu ý rằng những biến hóa tương quan trọn vẹn có thể không dùng tới bất kỳ thừa số nguyên tố nào có trong ước số. Ví dụ, ta không thể đưa ra quy tắc xét cho 14 mà tương quan đến việc nhân phương trình với 7. Đây không phải là yếu tố so với những ước nguyên tố vì chúng không phân tích được thành thừa số nào nhỏ hơn.
Ước số nguyên tố
Mục đích là phải đi tìm một số trong những nghịch hòn đảo của 10 theo modulo ước số nguyên tố đang xét (không vận dụng cho 2 và 5) và sử dụng nó làm nhân tử để làm cho tính chia hết cho ước nguyên tố đó của số ban sơ tùy từng tính chia hết của số mới nhận được sau quy trình biến hóa (thường là số nhỏ hơn ban sơ) cho cùng ước nguyên tố đang xét. Lấy ví dụ với số 31, chính vì 10×(−3) = −30 = 1 mod 31, ta được quy tắc sử dụng y − 3x trong bảng dưới. Cũng vì vậy, bởi 10×28 = 280 = 1 mod 31, ta đã có được một quy tắc khác xét chia hết cho 31, chọn quy tắc nào để dùng thì tùy lấy số nhỏ hơn để thuận tiện tính toán. Thực tế là quy tắc này dành riêng cho những ước nguyên tố ngoài 2 và 5 thực sự là quy tắc chia hết cho bất kỳ số nguyên tố cùng nhau nào với 10 (gồm có 33 và 39; xem bảng phía dưới). Đây là nguyên do tại sao Đk chia hết trong bảng trên và tại đây cho bất kỳ số nguyên tố cùng nhau nào với 10 đều phải có dạng giống nhau (tức cộng hoặc trừ bội của chữ số ở đầu cuối với phần còn sót lại của số).
Các ví dụ đáng để ý
Bảng sau phục vụ nhu yếu những quy tắc cho một số trong những ước số trên 30:
Ước số
Điều kiện chia hết
Ví dụ
31
Trừ 3 lần chữ số tận cùng vào phần còn sót lại của số cần xét.
837: 83 − 3×7 = 62
32
Số tạo bởi 5 chữ số ở đầu cuối chia hết cho 32.[2][3]
25,135,520: 35,520 = 1110×32
Nếu chữ số hàng trăm nghìn là chẵn, xét số tạo bởi 4 chữ số ở đầu cuối
41,312: 1312.
Nếu chữ số tạo bởi hàng trăm nghìn là lẻ, xét số tạo bởi 4 chữ số ở đầu cuối cộng 16.
254,176: 4176+16 = 4192.
Cộng hai chữ số ở đầu cuối vào 4 lần phần còn sót lại.
1312: (13×4) + 12 = 64.
33
Cộng 10 lần chữ số ở đầu cuối vào phần còn sót lại.
627: 62 + 10×7 = 132,
13 + 10×2 = 33.
Từ phải qua trái, cộng nhóm hai những chữ số lại với nhau rồi xét tổng đó.
2145: 21 + 45 = 66.
Số đó chia hết cho toàn bộ ba và 11.
627: 62 – 7 = 55 và 6 + 2 + 7 = 15 = 3 × 5
35
Số đó phải chia hết cho 7 và tận cùng bởi 0 hoặc 5.
315: 31 – 5×2 = 21 = 3×7, chia hết cho toàn bộ bảy và 5
37
Cộng từng nhóm 3 chữ số từ phải qua trái và xét tổng đó.
2,651,272: 2 + 651 + 272 = 925. 925 = 37×25.
Trừ 11 lần chữ số tận cùng vào phần còn sót lại.
925: 92 − (5×11) = 37.
39
Số đó chia hết cho toàn bộ ba và 13.
351: 35 – 1 = 34 và 3 + 5 + 4 = 12 = 3 × 4
Cộng 4 lần chữ số tận cùng vào phần còn sót lại.
351: 35 + (1 × 4) = 39
41
Tính tổng những nhóm năm chữ số từ phải sang trái rồi xét tổng đó.
72,841,536,727: 7 + 28,415 + 36,727 = 65,149 = 41×1,589.
Trừ 4 lần chữ số tận cùng vào phần còn sót lại.
738: 73 − 8 × 4 = 41.
43
Cộng 13 lần chữ số tận cùng vào phần còn sót lại.
36,249: 3624 + 9 × 13 = 3741,
374 + 1 × 13 = 387,
38 + 7 × 13 = 129,
12 + 9 × 13 = 129 = 43 × 3.
Trừ 3 lần hai chữ số ở đầu cuối vào phần còn sót lại.
36,249: 362 – 49 × 3 = 215 = 43 × 5.
45
Số đó phải chia hết cho 9 và tận cùng bởi 0 hoặc 5.[8]
2025: Tận cùng bởi 5 và 2+0+2+5 = 9.
47
Trừ 14 lần chữ số tận cùng vào phần còn sót lại.
1,642,979: 164297 − 9 × 14 = 164171,
16417 − 14 = 16403,
1640 − 3 × 14 = 1598,
159 − 8 × 14 = 47.
Cộng hai chữ số ở đầu cuối vào 6 lần phần còn sót lại.
705: 7 × 6 + 5 = 47.
49
Cộng 5 lần chữ số tận cùng vào phần còn sót lại.
1,127: 112+(7×5)=147.
147: 14 + (7×5) = 49
Cộng hai chữ số ở đầu cuối vào gấp đôi phần còn sót lại.
588: 5 × 2 + 88 = 98.
50
Hai chữ số ở đầu cuối là 00 hoặc 50.
134,250: 50.
51
Số đó phải chia hết cho toàn bộ ba và 17.
459: 4 × 2 – 59 = -51, và 4 + 5 + 9 = 18 = 3 × 6
Trừ 5 lần chữ số tận cùng vào phần còn sót lại.
204: 20-(4×5) = 0
Trừ hai chữ số ở đầu cuối vào gấp đôi phần còn sót lại.
459: 4 × 2 – 59 = -51.
53
Cộng 16 lần chữ số tận cùng vào phần còn sót lại.
3657: 365+(7×16)=477 = 9 × 53
Trừ hai chữ số ở đầu cuối vào 6 lần phần còn sót lại.
5777: 57 × 6 – 77 = 265.
55
Số đó phải chia hết cho 11 và tận cùng bởi 0 hoặc 5.[8]57
Số đó phải chia hết cho toàn bộ ba và 19.
3591: 359 + 1 × 2 = 361 = 19 × 19, và 3 + 5 + 9 + 1 = 15 = 3 × 5
Trừ 17 lần chữ số tận cùng vào phần còn sót lại.
3591: 359 − 17 = 342,
34 − 2 × 17 = 0.
59
Cộng 6 lần chữ số tận cùng vào phần còn sót lại.
295: 29 + 5×6= 59
61
Trừ 6 lần chữ số tận cùng vào phần còn sót lại.
732: 73-(2×6)=61
64
Số tạo bởi 6 chữ số ở đầu cuối phải chia hết cho 64.[2][3]
2,640,000 chia hết cho 64.
65
Số đó phải chia hết cho 13 và tận cùng bởi 0 hoặc 5.[8]67
Trừ hai lần hai chữ số ở đầu cuối vào phần còn sót lại.
9112: 91 – 12×2 = 67
Trừ 20 lần chữ số tận cùng vào phần còn sót lại.
4489: 448-9×20 = 448-180 = 268.
69
Số đó phải chia hết cho 3 và 23.
345: 3 + 4 + 5 = 12 = 3 × 4, và 34 + 5 × 9 = 69 = 3 × 23
Cộng 7 lần chữ số tận cùng vào phần còn sót lại.
345: 34 + 5×7 = 69
71
Trừ 7 lần chữ số tận cùng vào phần còn sót lại.
852: 85-(2×7) = 71
73
Lập tổng xen kẽ những nhóm 4 chữ số từ phải sang trái.
220,241: 241 – 22 = 219.
Cộng 22 lần chữ số tận cùng vào phần còn sót lại.
5329: 532 + 22 × 9 = 730,
7 + 22 × 3 = 73.
75
Số đó phải chia hết cho 3 và tận cùng bởi 00, 25, 50 hoặc 75.[8]77
Số đó chia hết cho 7 và 11.
693: 69 – 3 = 66 = 11 × 6, và 69 – (6 × 2) = 63 = 7 × 9
Lập tổng xen kẽ những nhóm 3 chữ số từ phải sang trái.
76,923: 923 – 76 = 847.
79
Cộng 8 lần chữ số tận cùng vào phần còn sót lại.
711: 71 + 1×8= 79
81
Trừ 8 lần chữ số tận cùng vào phần còn sót lại.
162: 16-(2×8)=0
83
Cộng 25 lần chữ số tận cùng vào phần còn sót lại.
581: 58+(1×25)=83
Cộng ba chữ số ở đầu cuối vào 4 lần phần còn sót lại.
38,014: (4×38) + 14 = 166
85
Số đó phải chia hết cho 17 tận cùng bởi 0 hoặc 5.
30,855: 3085 – 25 = 3060 = 17×18, và số đó tận cùng bởi 5.
87
Trừ 26 lần chữ số tận cùng vào phần còn sót lại.
15138: 1513 − 8 × 26 = 1305,
130 − 5 × 26 = 0.
89
Cộng 9 lần chữ số tận cùng vào phần còn sót lại.
801: 80 + 1×9 = 89
Cộng hai chữ số ở đầu cuối vào 11 lần phần còn sót lại.
712: 12 + (7×11) = 89
91
Trừ 9 lần chữ số tận cùng vào phần còn sót lại.
182: 18 – (2×9) = 0
Lập tổng xen kẽ những nhóm 3 chữ số từ phải sang trái.
5,274,997: 5 – 274 + 997 = 728
Số đó chia hết cho 7 và 13.
8281: 828+4 = 832. 83+8=91
828-2=826. 82-12=70.
95
Số đó phải chia hết cho 19 tận cùng bởi 0 hoặc 5.
51,585: 5158 + 10 = 5168,
516 + 16 = 532,
53 + 4 = 57 = 19×3, và số đó tận cùng bởi 5.
97
Trừ 29 lần chữ số tận cùng vào phần còn sót lại.
291: 29 – (1×29) = 0
Cộng hai chữ số ở đầu cuối vào 3 lần phần còn sót lại.
485: (3×4)+ 85 = 97
99
Số đó chia hết cho 9 và 11.
891: 89 – 1 = 88.
8 + 9 + 1 = 18.
Cộng những nhóm hai chữ số từ phải sang trái.
144,837: 14 + 48 + 37 = 99.
100
Tận cùng bởi tối thiểu hai chữ số 0.
14100: Nó có hai chữ số 0 ở cuối.
101
Lập tổng xen kẽ những nhóm 2 chữ số từ phải sang trái.
40,299: 4 – 2 + 99 = 101.
103
Cộng 31 lần chữ số tận cùng vào phần còn sót lại.
585658: 58565 + (8×31) = 58813. 58813: 103 = 571
Trừ hai chữ số ở đầu cuối vào 3 lần phần còn sót lại.
5356: (53×3) – 56 = 103
107
Trừ 32 lần chữ số tận cùng vào phần còn sót lại.
428: 42 – (8×32) = -214
Trừ hai chữ số ở đầu cuối vào 7 lần phần còn sót lại.
1712: 17 × 7 – 12 = 107
109
Cộng 11 lần chữ số tận cùng vào phần còn sót lại.
654: 65 + (11×4) = 109
111
Cộng những nhóm ba chữ số từ phải sang trái.
1,370,184: 1 + 370 + 184 = 555
113
Cộng 34 lần chữ số tận cùng vào phần còn sót lại.
3842: 384 + 34 × 2 = 452,
45 + 34 × 2 = 113.
121
Trừ 12 lần chữ số tận cùng vào phần còn sót lại.
847: 84 – 12 × 7 = 0
125
Số tạo bởi ba chữ số ở đầu cuối phải chia hết cho 125.[3]
2125 chia hết cho 125.
127
Trừ 38 lần chữ số tận cùng vào phần còn sót lại.
4953: 495 – 38 × 3 = 381,
38 – 38 × 1 = 0.
128
Số tạo bởi 7 chữ số ở đầu cuối phải chia hết cho 128.[2][3]
11,280,000 chia hết cho 128.
131
Trừ 13 lần chữ số tận cùng vào phần còn sót lại.
1834: 183 – 13 × 4 = 131,
13 – 13 = 0.
137
Lập tổng xen kẽ những nhóm 4 chữ số từ phải sang trái.
340,171: 171 – 34 = 137.
139
Cộng 14 lần chữ số tận cùng vào phần còn sót lại.
1946: 194 + 14 × 6 = 278,
27 + 14 × 8 = 139.
143
Lập tổng xen kẽ những nhóm 3 chữ số từ phải sang trái.
1,774,487: 1 – 774 + 487 = -286
Cộng 43 lần chữ số tận cùng vào phần còn sót lại.
6149: 614 + 43 × 9 = 1001,
100 + 43 = 143.
149
Cộng 15 lần chữ số tận cùng vào phần còn sót lại.
2235: 223 + 15 × 5 = 298,
29 + 15 × 8 = 149.
151
Trừ 15 lần chữ số tận cùng vào phần còn sót lại.
66,893: 6689 – 15 × 3 = 6644 = 151×44.
157
Trừ 47 lần chữ số tận cùng vào phần còn sót lại.
7536: 753 – 47 × 6 = 471,
47 – 47 = 0.
163
Cộng 49 lần chữ số tận cùng vào phần còn sót lại.
26,569: 2656 + 441 = 3097 = 163×19.
167
Trừ 5 lần hai chữ số ở đầu cuối vào phần còn sót lại.
53,774: 537 – 5 × 74 = 167.
173
Cộng 52 lần chữ số tận cùng vào phần còn sót lại.
8996: 899 + 52 × 6 = 1211,
121 + 52 = 173.
179
Cộng 18 lần chữ số tận cùng vào phần còn sót lại.
3222: 322 + 18 × 2 = 358,
35 + 18 × 8 = 179.
181
Trừ 18 lần chữ số tận cùng vào phần còn sót lại.
3258: 325 – 18 × 8 = 181,
18 – 18 = 0.
191
Trừ 19 lần chữ số tận cùng vào phần còn sót lại.
3629: 362 – 19 × 9 = 191,
19 – 19 = 0.
193
Cộng 58 lần chữ số tận cùng vào phần còn sót lại.
11194: 1119 + 58 × 4 = 1351,
135 + 58 = 193.
197
Trừ 59 lần chữ số tận cùng vào phần còn sót lại.
11820: 118 – 59 × 2 = 0.
199
Cộng 20 lần chữ số tận cùng vào phần còn sót lại.
3980: 39 + 20 × 8 = 199.
200
Hai chữ số cuối của số là “00”, và chữ số thứ ba từ phải (hàng trăm) là chẵn.
34,400: Chữ số hàng trăm là 4, và hai chữ số ở đầu cuối là 0.
211
Trừ 21 lần chữ số tận cùng vào phần còn sót lại.
44521: 4452 – 21 × 1 = 4431,
443 – 21 × 1 = 422,
42 – 21 × 2 = 0.
223
Cộng 67 lần chữ số tận cùng vào phần còn sót lại.
49729: 4972 + 67 × 9 = 5575,
557 + 67 × 5 = 892,
89 + 67 × 2 = 223.
225
Hai chữ số cuối của số đó là “00”, “25”, “50”, hoặc “75” và tổng những chữ số là một bội của 9.
15,075: 75 ở cuối và 1 + 5 + 0 + 7 + 5 = 18 = 2×9.
227
Trừ 68 lần chữ số tận cùng vào phần còn sót lại.
51756: 5175 – 68 × 6 = 4767,
476 – 68 × 7 = 0.
229
Cộng 23 lần chữ số tận cùng vào phần còn sót lại.
52441: 5244 + 23 × 1 = 5267,
526 + 23 × 7 = 687,
68 + 23 × 7 = 229.
233
Cộng 70 lần chữ số tận cùng vào phần còn sót lại.
54289: 5428 + 70 × 9 = 6058,
605 + 70 × 8 = 1165,
116 + 70 × 5 = 466,
46 + 70 × 6 = 466 = 233 × 2.
239
Cộng từng nhóm 7 chữ số từ phải sang trái với nhau rồi xét tổng.
1,560,000,083: 156 + 83 = 239.
Cộng 24 lần chữ số tận cùng vào phần còn sót lại.
57121: 5712 + 24 × 1 = 5736,
573 + 24 × 6 = 717,
71 + 24 × 7 = 239.
241
Trừ 24 lần chữ số tận cùng vào phần còn sót lại.
58081: 5808 – 24 × 1 = 5784,
578 – 24 × 4 = 482,
48 – 24 × 2 = 0.
250
Số tạo bởi ba chữ số ở đầu cuối phải chia hết cho 250.[2][3]
1,327,750 chia hết cho 250.
251
Trừ 25 lần chữ số tận cùng vào phần còn sót lại.
63001: 6300 – 25 × 1 = 6275,
627 – 25 × 5 = 502,
50 – 25 × 2 = 0.
256
Số tạo bởi 8 chữ số ở đầu cuối phải chia hết cho 256.[2][3]
225,600,000 chia hết cho 256.
257
Trừ 77 lần chữ số tận cùng vào phần còn sót lại.
66049: 6604 – 77 × 9 = 5911,
591 – 77 × 1 = 514 = 257 × 2.
263
Cộng 79 lần chữ số tận cùng vào phần còn sót lại.
69169: 6916 + 79 × 9 = 7627,
762 + 79 × 7 = 1315,
131 + 79 × 5 = 526,
52 + 79 × 6 = 526 = 263 × 2.
269
Cộng 27 lần chữ số tận cùng vào phần còn sót lại.
72361: 7236 + 27 × 1 = 7263,
726 + 27 × 3 = 807,
80 + 27 × 7 = 269.
271
Xét tổng những nhóm 5 chữ số từ phải sang trái.
77,925,613,961: 7 + 79,256 + 13,961 = 93,224 = 271×344.
Trừ 27 lần chữ số tận cùng vào phần còn sót lại.
73441: 7344 – 27 × 1 = 7317,
731 – 27 × 7 = 542,
54 – 27 × 2 = 0.
277
Trừ 83 lần chữ số tận cùng vào phần còn sót lại.
76729: 7672 – 83 × 9 = 6925,
692 – 83 × 5 = 277.
281
Trừ 28 lần chữ số tận cùng vào phần còn sót lại.
78961: 7896 – 28 × 1 = 7868,
786 – 28 × 8 = 562,
56 – 28 × 2 = 0.
283
Cộng 85 lần chữ số tận cùng vào phần còn sót lại.
80089: 8008 + 85 × 9 = 8773,
877 + 85 × 3 = 1132,
113 + 85 × 2 = 283.
293
Cộng 88 lần chữ số tận cùng vào phần còn sót lại.
85849: 8584 + 88 × 9 = 9376,
937 + 88 × 6 = 1465,
146 + 88 × 5 = 586,
58 + 88 × 6 = 586 = 293 × 2.
300
Hai chữ số cuối của số đó là “00”, và tổng những chữ số phải chia hết cho 3.
3,300: Tổng những chữ số của số là 6, và tận cùng bởi 00.
329
Cộng 33 lần chữ số tận cùng vào phần còn sót lại.
9541:954+1×33=954+33=987. 987=3×329.
331
Trừ 33 lần chữ số tận cùng vào phần còn sót lại.
22177: 2217-231=1986. 1986=6×331.
333
Cộng những nhóm ba chữ số từ phải sang trái.
410,922: 410 + 922 = 1,332
369
Cộng từng nhóm 5 chữ số từ phải sang trái với nhau rồi xét tổng.
50243409: 43409+502 = 43911. 43911 = 369×119.
Cộng 37 lần chữ số tận cùng vào phần còn sót lại.
8487: 848+7×37 = 848+259 = 1107 = 369×3.
375
Số tạo bởi 3 chữ số cuối phải chia hết cho 125 và tổng những chữ số là một bội của 3.
140,625: 625 = 125×5 và 1 + 4 + 0 + 6 + 2 + 5 = 18 = 6×3.
499
Cộng ba chữ số ở đầu cuối vào hai lần phần còn sót lại.
74,351: 74 × 2 + 351 = 499.
500
Tận cùng bởi 000 hoặc 500.
47,500 chia hết cho 500.
512
Số tạo bởi chín chữ số ở đầu cuối phải chia hết cho 512.[2][3]
1,512,000,000 chia hết cho 512.
625
Tận cùng bởi 0000, 0625, 1250, 1875, 2500, 3125, 3750, 4375, 5000, 5625, 6250, 6875, 7500, 8125, 8750 hoặc 9375.
Hoặc số tạo bởi bốn chữ số ở đầu cuối chia hết cho 625.
567,886,875: 6875.
983
Cộng ba chữ số ở đầu cuối vào 17 lần phần còn sót lại.
64878: 64×17+878=1966. 1966=2×983
987
Cộng ba chữ số ở đầu cuối vào 13 lần phần còn sót lại.
30597: 30×13+597=987
Số đó phải chia hết cho 329 với tổng những chữ số chia hết cho 3.
547785: 5+4+7+7+8+5=36. 36=3×12
54778+5×33=54943. 5494+3×33=5593. 559+3×33=658.
658=2×329.
989
Cộng ba chữ số ở đầu cuối vào 11 lần phần còn sót lại.
21758: 21 × 11 = 231; 758 + 231 = 989
Số đó phải chia hết cho toàn bộ 23 và 43.
1978: 197+56=253. 253=11×23
197+104=301. 301=7×43.
993
Cộng ba chữ số ở đầu cuối vào 7 lần phần còn sót lại.
986049: 49+6902=6951. 6951=7×993.
Số đó phải chia hết cho 331 với tổng những chữ số chia hết cho 3.
8937: 8+7=15. 15=3×5. (Ghi chú: 9 và 3 đều chia hết cho 3 nên không cần tính vào tổng.)
893-231=662. 662=2×331.
997
Cộng ba chữ số ở đầu cuối vào 3 lần phần còn sót lại.
157,526: 157 × 3 + 526= 997
999
Cộng những nhóm ba chữ số từ phải sang trái.
235,764: 235 + 764 = 999
1000
Tận cùng bởi tối thiểu 3 chữ số 0.
2000 tận cùng bởi 3 chữ số 0
Để kiểm tra tính chia hết cho ước số D, trong số đó D kết thúc bằng 1, 3, 7 hoặc 9, trọn vẹn có thể sử dụng phương pháp sau.[12] Tìm một bội số của D tận cùng bởi 9. (Tức là nếu D tận cùng bởi 1, 3, 7, hoặc 9 thì nhân tương ứng với 9, 3, 7, hoặc 1.) Sau đó thêm vào đó một và chia cho 10, kết quả nhận được kí hiệu là m. Vậy thì, một số trong những bất kỳ dạng N = 10t + q chia hết cho D khi và chỉ khi mq + t cũng chia hết cho D. Nếu số đó quá dài, ta cũng trọn vẹn có thể tách số đó thành từng xâu, mỗi xâu gồm e chữ số, thỏa mãn thị hiếu 10e = 1 hoặc 10e = -1 (mod D). Tổng (hoặc tổng xen kẽ) của những xâu này còn có cùng tính chia hết cho D tương tự số ban sơ.
Ví dụ, để xác lập xem số 913 = 10×91 + 3 có chia hết cho 11 hay là không, tìm m sao cho m = (11×9+1)÷10 = 10. Khi đó mq+t = 10×3+91 = 121 = 11×11; Lấy một ví dụ khác, để xác lập xem 689 = 10×68 + 9 có chia hết cho 53 hay là không, tìm rằng m = (53×3+1)÷10 = 16. Khi đó mq+t = 16×9+68 = 212 chia hết cho 53 (có thương là 4); vì vậy 689 cũng chia hết cho 53.
Cách khác, bất kỳ số nguyên nào Q. = 10c + d chia hết cho n = 10a + b, sao cho gcd(n, 2, 5) = 1, nếu c+D(n)*d = A*n với một số trong những nguyên A, trong số đó:
D
(
n
)
≡
{
9
a
+
1
,
nếu
n
= 10a+1
3
a
+
1
,
nếu
n
= 10a+3
7
a
+
5
,
nếu
n
= 10a+7
a
+
1
,
nếu
n
= 10a+9
displaystyle D(n)equiv begincases9a+1,&mboxnếu nmbox = 10a+1\3a+1,&mboxnếu nmbox = 10a+3\7a+5,&mboxnếu nmbox = 10a+7\a+1,&mboxnếu nmbox = 10a+9endcases
Một vài số hạng thứ nhất của dãy tạo bởi D(n) là một trong những, 1, 5, 1, 10, 4, 12, 2,… (dãy A333448 trong OEIS).
Dạng theo từng khoảng chừng của hàm D(n) và dãy được tạo ra chính vì nó được nhà toán học người Bulgaria Ivan Stoykov công bố lần thứ nhất vào tháng 3 năm 2020.[13]
Nhiều quy tắc đơn thuần và giản dị trọn vẹn có thể được lập ra chỉ bằng phương pháp sử dụng những thao tác đại số, tạo ra những nhị thức và sắp xếp lại chúng. Bằng cách viết một số trong những dưới dạng tổng của từng chữ số nhân với một lũy thừa của 10, trọn vẹn có thể thao tác trên mỗi bậc chữ số riêng lẻ.
Trường hợp quy tắc cộng toàn bộ chữ số
Phương pháp này vận dụng cho xét những ước là thừa số (nhân tử) của 10 − 1 = 9.
Lấy 3 làm ví dụ, 3 chia hết 9 = 10 − 1. Vậy tức là
10
≡
1
(
mod
3
)
displaystyle 10equiv 1pmod 3
(click more số học mô đun). Tương tự với những bậc lũy thừa cao hơn nữa của 10:
10
n
≡
1
n
≡
1
(
mod
3
)
displaystyle 10^nequiv 1^nequiv 1pmod 3
. Tất cả chúng đều đồng dư với cùng 1 modulo 3. Vì hai số đồng dư modulo 3 thì cả hai đều chia hết cho 3 hoặc đều không chia hết, ta trọn vẹn có thể tùy ý hoán đổi giữa những giá trị đồng dư với 3. Vì thế, với một số trong những ví như sau, ta trọn vẹn có thể thay toàn bộ những lũy thừa 10 trong số đó bằng số 1:
100
⋅
a
+
10
⋅
b
+
1
⋅
c
≡
(
1
)
a
+
(
1
)
b
+
(
1
)
c
(
mod
3
)
displaystyle 100cdot a+10cdot b+1cdot cequiv (1)a+(1)b+(1)cpmod 3
và đó chính bằng tổng những chữ số có trong số đó.
Trường hợp quy tắc sử dụng tổng xen kẽ những chữ số
Phương pháp này thích hợp cho những ước là nhân tử của 10 + 1 = 11.
Lấy tín hiệu của 11 làm ví dụ, 11 chia hết 11 = 10 + 1. Tức là
10
≡
−
1
(
mod
11
)
displaystyle 10equiv -1pmod 11
. Với những bậc lũy thừa cao hơn nữa của 10, chúng đồng dư 1 so với những bậc chẵn và đồng dư với −1 so với những bậc lẻ:
10
n
≡
(
−
1
)
n
≡
{
1
,
khi
n
chẵn
−
1
,
khi
n
lẻ
(
mod
11
)
.
displaystyle 10^nequiv (-1)^nequiv begincases1,&mboxkhi nmbox chẵn\-1,&mboxkhi nmbox lẻendcasespmod 11.
Như ở trường hợp trên, ta trọn vẹn có thể thay những bậc lũy thừa của 10 với những giá trị đồng dư tương ứng của chúng:
1000
⋅
a
+
100
⋅
b
+
10
⋅
c
+
1
⋅
d
≡
(
−
1
)
a
+
(
1
)
b
+
(
−
1
)
c
+
(
1
)
d
(
mod
11
)
displaystyle 1000cdot a+100cdot b+10cdot c+1cdot dequiv (-1)a+(1)b+(-1)c+(1)dpmod 11
đó cũng đó là hiệu giữa tổng những chữ số ở vị trí hàng lẻ và tổng những chữ số ở vị trí hàng chẵn.
Trường hợp chỉ việc xét (những) chữ số ở đầu cuối
Quy tắc này vận dụng cho những ước là thừa số của một lũy thừa của 10 (ví dụ nổi bật nổi bật 2, 5, 10, 20, 25, 50, 100, 125, 250…). Đó là vì bậc lũy thừa đủ cao của cơ số (10) chia hết cho ước cần xét, và trọn vẹn có thể bỏ qua.
Ví dụ, trong hệ cơ số 10, những thừa số của 101 gồm có 2, 5, và 10. Vì thế, tính chia hết cho 2, 5, và 10 chỉ tùy từng 1 chữ số ở đầu cuối có chia hết cho những ước đó hay là không. Các thừa số của 102 gồm có 4 và 25, và tính chia hết cho những ước đó chỉ tùy từng 2 chữ số ở đầu cuối.
Trường hợp chỉ bỏ đi (những) chữ số ở đầu cuối
Hầu hết những số nguyên đều không chia hết 9 hoặc 10, nhưng chia hết lũy thừa cao hơn nữa của 10n hoặc 10n − 1. Trong trường hợp này số sẽ vẫn được viết thành những bậc lũy thừa của 10, nhưng không khai triển trọn vẹn.
Ví dụ, 7 không chia hết 9 hay 10, nhưng có chia hết 98, là một số trong những gần 100. Vì vậy, tiếp tục từ đây:
100
⋅
a
+
b
displaystyle 100cdot a+b
ở đó trong trường hợp này a là một số trong những nguyên bất kỳ, và b trọn vẹn có thể nằm trong tầm từ 0 đến 99. Tiếp Từ đó,
(
98
+
2
)
⋅
a
+
b
displaystyle (98+2)cdot a+b
và lại khai triển
98
⋅
a
+
2
⋅
a
+
b
,
displaystyle 98cdot a+2cdot a+b,
và sau khoản thời hạn bỏ đi số hạng là bội số đã biết của 7, kết quả sẽ là:
2
⋅
a
+
b
,
displaystyle 2cdot a+b,
đó đó là quy tắc “nhân đôi số tạo thành bởi phần còn sót lại ngoài hai chữ số cuối, rồi thêm vào đó vào hai chữ số cuối”.
Trường hợp (những) chữ số ở đầu cuối được nhân với một thông số
Biểu diễn của số nguyên cũng trọn vẹn có thể nên phải nhân với một số trong những nguyên tố cùng nhau với ước số đang xét mà không làm thay đổi tính chia hết của nó. Từ quan sát rằng 7 chia hết 21, toàn bộ chúng ta trọn vẹn có thể tiến hành như sau:
10
⋅
a
+
b
,
displaystyle 10cdot a+b,
sau khoản thời hạn nhân với 2, giá trị này trở thành
20
⋅
a
+
2
⋅
b
,
displaystyle 20cdot a+2cdot b,
và tiếp sau đó thành
(
21
−
1
)
⋅
a
+
2
⋅
b
.
displaystyle (21-1)cdot a+2cdot b.
bỏ đi bội số 21 ta được
−
1
⋅
a
+
2
⋅
b
,
displaystyle -1cdot a+2cdot b,
và nhân với −1 được
a
−
2
⋅
b
.
displaystyle a-2cdot b.
Có thể sử dụng một trong hai quy tắc ở đầu cuối để xét chia hết, tùy thuộc vào quy tắc nào dễ tiến hành tính toán hơn. Chúng tương ứng với quy tắc “trừ hai lần chữ số tận cùng vào phần còn sót lại”.
Chứng minh sử dụng số học mô đun
Phần này sẽ minh họa phương pháp cơ bản; toàn bộ những quy tắc khác trọn vẹn có thể được suy ra theo cùng một quy trình. Điều tại đây yêu cầu nền tảng kiến thức và kỹ năng cơ bản về số học mô đun; so với tính chia hết cho ước khác 2 và 5 những chứng tỏ dựa vào kết quả cơ bản rằng 10 mod m khả nghịch nếu 10 và m nguyên tố cùng nhau.
Đối với 2n hoặc 5n:
Chỉ cần xét n chữ số ở đầu cuối.
10
n
=
2
n
⋅
5
n
≡
0
(
mod
2
n
hoặc
5
n
)
displaystyle 10^n=2^ncdot 5^nequiv 0pmod 2^nmbox hoặc 5^n
Biểu diễn x dưới dạng
10
n
⋅
y
+
z
,
displaystyle 10^ncdot y+z,
x
=
10
n
⋅
y
+
z
≡
z
(
mod
2
n
hoặc
5
n
)
displaystyle x=10^ncdot y+zequiv zpmod 2^nmbox hoặc 5^n
và tính chia hết của x cho 2 và 5 là tương tự so với z.
Đối với 7:
Bởi vì 10 × 5 ≡ 10 × (−2) ≡ 1 (mod 7) toàn bộ chúng ta trọn vẹn có thể làm như sau:
Biểu diễn x dưới dạng
10
⋅
y
+
z
,
displaystyle 10cdot y+z,
−
2
x
≡
y
−
2
z
(
mod
7
)
,
displaystyle -2xequiv y-2zpmod 7,
vì thế x chia hết cho 7 khi và chỉ khi y − 2z chia hết cho 7.
- Chia cho số không
- Tính chẵn lẻ (toán học)
- Apostol, Tom M. (1976). Introduction to analytic number theory. Undergraduate Texts in Mathematics. 1. Springer-Verlag. ISBN 978-0-387-90163-3.
- Kisačanin, Branislav (1998). Mathematical problems and proofs: combinatorics, number theory, and geometry. Plenum Press. ISBN 978-0-306-45967-2.
- Richmond, Bettina; Richmond, Thomas (2009). A Discrete Transition to Advanced Mathematics. Pure and Applied Undergraduate Texts. 3. American Mathematical Soc. ISBN 978-0-8218-4789-3.
- Divisibility Criteria tại cut−the−knot
- Stupid Divisibility Tricks những quy tắc chia hết cho 2–100.
Reply
3
0
Chia sẻ
– Một số từ khóa tìm kiếm nhiều : ” đoạn Clip hướng dẫn Tìm số tự nhiên nhỏ nhất có 10 chữ số biết rằng số đó chia cho 17 dư 2 chia cho 29 dư 5 tiên tiến và phát triển nhất , Share Link Cập nhật Tìm số tự nhiên nhỏ nhất có 10 chữ số biết rằng số đó chia cho 17 dư 2 chia cho 29 dư 5 “.
Hỏi đáp vướng mắc về Tìm số tự nhiên nhỏ nhất có 10 chữ số biết rằng số đó chia cho 17 dư 2 chia cho 29 dư 5
Quý khách trọn vẹn có thể để lại Comment nếu gặp yếu tố chưa hiểu nghen.
#Tìm #số #tự #nhiên #nhỏ #nhất #có #chữ #số #biết #rằng #số #đó #chia #cho #dư #chia #cho #dư Tìm số tự nhiên nhỏ nhất có 10 chữ số biết rằng số đó chia cho 17 dư 2 chia cho 29 dư 5
Bình luận gần đây